
z/OS

TSO/E Guide to the Server-Requester
Programming Interface

SA22-7785-00

���

z/OS

TSO/E Guide to the Server-Requester
Programming Interface

SA22-7785-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Appendix. Notices”
on page 83.

First Edition, March 2001

This edition applies to Version 1 Release 1 of z/OS (5694-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . v

Tables . vii

About This Book . ix
Who Should Use This Book . ix
How This Book Is Organized . ix
Where to Find More Information x

Chapter 1. Introduction . 1
Concepts of the TSO/E Enhanced Connectivity Facility 1
What is an MVS Server?. 1
What is MVSSERV? . 3
What You Need to Do to Write Servers 4
Writing Access Method Drivers for MVSSERV 5

Chapter 2. Designing and Writing a Server 7
Server Design. 7
Steps for Designing a Server . 7
Writing a Server . 8
Compiling or Assembling a Server 12
Sample Servers . 12

Chapter 3. Designing and Writing a Server Initialization/Termination
Program . 35

Program Design . 35
Writing an Initialization/Termination Program 36
Initialization . 37
Termination . 41
Compiling or Assembling an Initialization/Termination Program 42
Sample Initialization/Termination Program 42

Chapter 4. Writing an Access Method Driver 53
What is an Access Method Driver? 53
Considerations for Writing Access Method Drivers 55
Sample Access Method Driver 57

Chapter 5. Installing Programs and Data Sets for Use with MVSSERV . . . 59
Installing a Program . 59
Using the Input Parameter Data Set 60
Additional MVSSERV Data Sets 61

Chapter 6. Testing and Diagnosis 65
Testing Servers . 65
Diagnosing Servers . 66

Chapter 7. Macro Syntax and Parameters 69
CHSDCPRB Macro . 69
CHSCED Macro . 70
INITTERM Macro . 70
DEFSERV Macro . 71
SENDREQ Macro . 73
CHSTRACE Macro . 76

© Copyright IBM Corp. 1988, 2001 iii

Chapter 8. MVSSERV Return Codes 79
Return Codes from the DEFSERV Macro 79
Return Codes from the SENDREQ Macro 80
Return Codes from the CHSTRACE Macro 81

Appendix. Notices . 83
Programming Interface Information 85
Trademarks . 85

Bibliography . 87
TSO/E Publications . 87
Related Publications . 87

Index . 89

iv z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Figures

1. Logical Server Organization . 2
2. The MVSSERV Enhanced Connectivity Environment 3
3. Events in an MVSSERV Session . 4
4. Overview of Service Request Handling . 8
5. Registers Passed to the Server . 9
6. Sample Server IBMABASE . 14
7. Sample Server IBMABAS1 . 23
8. Sample Server IBMABAS2 . 29
9. MVSSERV Logical Task Structure . 35

10. Overview of an Initialization/Termination Program’s Processing 37
11. Registers Passed at Initialization . 37
12. The Define Server Parameter Area . 40
13. Registers Passed at Termination . 41
14. Sample Initialization/Termination Program. 43
15. The MVSSERV Enhanced Connectivity Environment 54
16. MVSSERV Input to an Access Method Driver . 55
17. Sample Access Method Driver . 57
18. Sample Trace Data Set . 67

© Copyright IBM Corp. 1988, 2001 v

vi z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Tables

1. CPRB Control Block on Entry to Server . 9
2. CPRB Control Block on Exit from the Server. 11
3. CPRB Control Block with Reply from Another Server. 11
4. INITTERM Control Block with Initialization Input 37
5. CPRB Control Block Used to Define a Server . 39
6. INITTERM Control Block with Termination Input 41
7. MVSSERV Macros . 69
8. Connectivity Environment Descriptor (CED) . 70
9. INITTERM Control Block . 71

10. DEFSERV Macro Syntax . 72
11. CPRB Control Block Used to Define a Server . 73
12. SENDREQ Macro Syntax. 74
13. CPRB Control Block for Sending a Request (SENDREQ) 76
14. CHSTRACE Macro Syntax . 77
15. Return Codes from the DEFSERV Macro . 79
16. Return Codes in the DEFSERV CPRB . 79
17. Return Codes from the SENDREQ Macro . 80
18. Return Codes in the SENDREQ CPRB. 80
19. Return Codes from the CHSTRACE Macro . 81

© Copyright IBM Corp. 1988, 2001 vii

viii z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

About This Book

The server-requester programming interface (SRPI) of the TSO/E Enhanced
Connectivity Facility lets you write server programs. The servers can provide MVS
host computer services, data, and resources to requester programs on IBM
personal computers.

This book tells you how to write an MVS server to receive a service request,
process the request, and return a reply to the requester. The book includes a
sample server, along with information on installing, testing, and debugging servers.

This book also includes information about how to write programs called access
method drivers. Access method drivers allow the MVS host to manage
server-requester communications across different hardware connections with the
personal computer (PC).

Who Should Use This Book
This book is intended for:

v Application programmers who design, write, and test MVS servers and server
initialization/termination programs.

v System programmers who allocate and initialize the data sets that make MVS
servers and diagnosis information available to users.

v System programmers who write or install access method drivers for use with the
TSO/E Enhanced Connectivity Facility.

The audience must be familiar with MVS programming conventions and the
assembler programming language.

How This Book Is Organized
v “Chapter 1. Introduction” on page 1 describes MVS servers and how they provide

MVS services, data, and resources to requester programs.

v “Chapter 2. Designing and Writing a Server” on page 7 describes the input a
server receives, the tools a server can use to process requests, and the output a
server must provide.

v “Chapter 3. Designing and Writing a Server Initialization/Termination Program” on
page 35 describes how to write a program that initializes one or more servers,
obtains resources for them, and terminates them.

v “Chapter 4. Writing an Access Method Driver” on page 53 describes how to write
a program that can manage server-requester communications across specific
PC-to-Host hardware connections.

v “Chapter 5. Installing Programs and Data Sets for Use with MVSSERV” on
page 59 describes how to allocate and initialize the data sets that give users
access to servers, initialization/termination programs, access method drivers, and
diagnosis information.

v “Chapter 6. Testing and Diagnosis” on page 65 explains how to use the
MVSSERV command to test a server. This chapter also tells how to use the
MVSSERV trace data set to diagnose server problems.

v “Chapter 7. Macro Syntax and Parameters” on page 69 describes the syntax and
parameters of the macros you can use in MVSSERV programming.

© Copyright IBM Corp. 1988, 2001 ix

v “Chapter 8. MVSSERV Return Codes” on page 79 describes the return codes
that you may receive from the MVSSERV macros.

Where to Find More Information
Please see z/OS Information Roadmap for an overview of the documentation
associated with z/OS, including the documentation available for z/OS TSO/E.

Accessing Licensed Books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

Using LookAt to Look Up Message Explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages and system abends.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

x z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

You can use LookAt on the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
News and Help or from the z/OS Collection, SK3T-4269 .

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following example:
lookat iec192i

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message
ID. You can select the release if needed.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

About This Book xi

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

xii z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Chapter 1. Introduction

Concepts of the TSO/E Enhanced Connectivity Facility 1
What is an MVS Server?. 1

Service Functions . 2
Initialization/Termination Programs 2

What is MVSSERV? . 3
The SRPI . 3
The CPRB Control Block. 4
The INITTERM Control Block 4
The Sequence of Events in an MVSSERV Session 4

What You Need to Do to Write Servers 4
Writing Access Method Drivers for MVSSERV 5

This chapter introduces the TSO/E Enhanced Connectivity Facility, the server
programs that you can write for it, and the MVSSERV command that manages
TSO/E Enhanced Connectivity Facility sessions on MVS.

Concepts of the TSO/E Enhanced Connectivity Facility
The TSO/E Enhanced Connectivity Facility provides a standard way for programs
on different systems to share services.

With the TSO/E Enhanced Connectivity Facility, programs on properly-configured
IBM Personal Computers (PCs) can obtain services from programs on IBM host
computers running MVS. The PC programs issue service requests and the host
programs issue service replies, which the TSO/E Enhanced Connectivity Facility
passes between the systems.

The PC programs that issue service requests are called requesters, and the host
programs that issue replies are called servers. Servers and requesters together
form Enhanced Connectivity applications.

Because the TSO/E Enhanced Connectivity Facility passes the requests and
replies, you can write servers and requesters without concern for communications
protocols. The requester simply specifies the server’s name, the request input, and
a reply buffer. The server receives the input, performs the service, and provides the
reply. The TSO/E Enhanced Connectivity Facility passes the requests and replies in
a standard, easily-referenced control block.

Host servers can give PC users access to host computer data and resources such
as printers and storage. This book explains how to write an MVS host server and
includes a sample server that lets a PC requester process MVS data.

For information about PC hardware and software requirements, refer to Enhanced
Connectivity Facilities Introduction.

What is an MVS Server?
MVS servers are programs that provide MVS host services, through the TSO/E
Enhanced Connectivity Facility, to requester programs on a properly configured IBM
Personal Computer.

© Copyright IBM Corp. 1988, 2001 1

MVS servers are made up of service functions. The servers themselves are defined
in initialization/termination programs.

Figure 1 shows the logical organization of servers, their service functions, and an
initialization/termination program.

Service Functions
A service function is the part of a server that satisfies a particular service request.

A server can handle different service requests by having a service function for each
request. Requests identify the service function as well as the server. The server
receives the request and passes control to the requested service function. For
details, see “Chapter 2. Designing and Writing a Server” on page 7.

Service functions can be related to the server in several ways: as subroutines of the
server, as separate CSECTs, or as separate load modules.

Initialization/Termination Programs
An initialization/termination program defines one or more servers and provides a
common work environment and resources for them. In particular, an
initialization/termination program does the following:

v Defines its servers to the TSO/E Enhanced Connectivity manager, MVSSERV, so
MVSSERV can route service requests to the servers.

v Isolates servers in a single MVS subtask, thus protecting the main task
(MVSSERV) or other subtasks from server failures.

v Obtains and releases resources such as data sets and storage for the servers.

Servers and their initialization/termination programs can be physically packaged as
separate load modules or as separate CSECTs in the same load module.
“Chapter 3. Designing and Writing a Server Initialization/Termination Program” on
page 35 describes factors to consider when packaging servers and
initialization/termination programs.

Server A

Server B

Service Function 1

Service Function 2

Service Function 3

.

.

.

Initialization/Termination Program 1

Figure 1. Logical Server Organization

What is an MVS Server?

2 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

What is MVSSERV?
MVSSERV is a TSO/E command processor that manages TSO/E Enhanced
Connectivity sessions on the MVS host computer. Users issue MVSSERV on
TSO/E to start an Enhanced Connectivity session. The users can then switch to PC
mode and invoke requesters from an IBM PC that is running an Enhanced
Connectivity program.

MVSSERV consists of a router and an interface to the servers. The server interface
is called the server-requester programming interface (SRPI).

The router, through the SRPI, routes service requests to servers and routes service
replies back to the requesters. Figure 2 shows the TSO/E Enhanced Connectivity
environment during an MVSSERV session.

The SRPI
MVSSERV’s server-requester programming interface (SRPI) resembles the
CALL/RETURN interface of most high-level programming languages. Through the
SRPI, MVSSERV gives the server control along with pointers to input, a buffer for
output, and a return address. This interface allows you to write and use your own
servers with MVSSERV.

Through the SRPI, MVSSERV calls servers and their initialization/termination
programs for three phases of processing:

v Initialization -- setting up servers and their resources when MVSSERV begins,
and defining the servers to MVSSERV.

v Handling service requests -- passing service requests to servers and sending
back replies.

v Termination -- cleaning up servers and their resources when MVSSERV ends.

PC SYSTEM

ROUTER ROUTER SERVER

HOST SYSTEM with MVS/XA

REQUESTER

MVS Subtask

.

.

.

.

.

.

.

.

.

.

.

.

REQUESTREQU TES
REQU TES

REPLYREPLY REPLY

Figure 2. The MVSSERV Enhanced Connectivity Environment

What is MVSSERV?

Chapter 1. Introduction 3

The CPRB Control Block
Service requests and replies pass through the SRPI in a control block called the
connectivity programming request block (CPRB).

CPRBs have several purposes:

v The initialization/termination program uses a CPRB to define servers to
MVSSERV.

v MVSSERV uses a CPRB to send service requests to the server, and to return
the server’s reply.

v Servers can send requests to other servers in a CPRB.

The CPRB contains service request data such as the following:
v The name of the requested server and the service function ID
v The lengths and addresses of buffers containing input
v The lengths and addresses of reply buffers

The INITTERM Control Block
When MVSSERV begins and ends, it passes the INITTERM control block to the
initialization/termination programs. INITTERM indicates whether the call is for
initialization or termination, and includes other input that the program needs.

The Sequence of Events in an MVSSERV Session
Figure 3 shows the sequence of events in an MVSSERV session.

What You Need to Do to Write Servers
The following is an overview of the steps you need to follow when writing servers
for MVSSERV. Subsequent chapters of the book give further details.

Initialization

Server call

Termination

INITTERM

CPRB

CPRB

CPRB

INITTERM

Get service request

Perform service

Send reply

User Action

MVSSERV Server Initialization

CPRB

Server

Server Termination

SRPI

Clean up for servers

Return

Get server resources

Define servers
to MVSSERV

Return

(PC) Issue Requests

(TSO) Issue MVSSERV

(TSO) End MVSSERV
.
.
.

.

.

.

Figure 3. Events in an MVSSERV Session

What is MVSSERV?

4 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

1. Select or create a load module data set to contain the executable code for the
server and initialization/termination program. If the server and
initialization/termination program are in different load modules, the
initialization/termination program must load the server (see “Chapter 3.
Designing and Writing a Server Initialization/Termination Program” on page 35
for details).

2. Write the server (see “Chapter 2. Designing and Writing a Server” on page 7).

v The server must:
– Access the service request input in the CPRB.
– Call the requested service function.
– Perform the service, calling other servers if necessary.
– Indicate the reply length in the CPRB.
– Set the return code in register 15.
– Return control to MVSSERV.
– Provide recovery (optional).

v Compile or assemble the server and link it to a load module.

3. Write an initialization/termination program (see “Chapter 3. Designing and
Writing a Server Initialization/Termination Program” on page 35).

v For initialization, the program must:
– Load the server (if necessary).
– Obtain resources (if necessary).
– Define the server to MVSSERV and pass a parameter list (parmlist)

pointing to any resources.

4. For termination, the program must:
v Free any resources.
v Delete the server (if loaded).
v Compile or assemble the initialization/termination program and link it to a load

module.

5. Install the server and initialization/termination program (see “Chapter 5. Installing
Programs and Data Sets for Use with MVSSERV” on page 59).
v Install the programs in a STEPLIB or system library.
v Define the initialization/termination program to MVSSERV in the input

parameter data set.
v Allocate diagnosis data sets (optional):

– Trace data set
– Dump data set
– Dump suppression data set

6. Invoke MVSSERV to test your server (see “Chapter 6. Testing and Diagnosis”
on page 65).

Writing Access Method Drivers for MVSSERV
MVSSERV includes programs called access method drivers (AMDs), which manage
Host-to-PC communications across certain hardware connections. Specifically, the
MVSSERV AMDs communicate with PCs that have Distributed Function Terminal
(DFT) and Control Unit Terminal (CUT) mode attachment to the host through the
IBM 3174 or 3274 control unit. In addition, MVSSERV allows installations to write
and install their own AMDs to manage other communication methods. “Chapter 4.
Writing an Access Method Driver” on page 53 describes MVSSERV’s AMD interface
and special considerations for writing your own AMDs.

What You Need to Do to Write Servers

Chapter 1. Introduction 5

Writing Access Method Drivers for MVSSERV

6 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Chapter 2. Designing and Writing a Server

Server Design. 7
Steps for Designing a Server . 7
Writing a Server . 8

Using the CPRB . 8
Receiving the Service Request 8
Performing the Service . 10
Sending the Service Reply 10
Sending a Service Request 11
Receiving a Service Reply. 11
Issuing Messages . 12
The Server Recovery Routine 12

Compiling or Assembling a Server 12
Sample Servers . 12

This chapter describes the steps to follow when designing and writing servers.

Server Design
Servers provide MVS services, data, and resources to requester programs.
Therefore, before you write a server, you need to define what output it will provide,
and what requester input it will receive.

Servers and requesters work in pairs. Each service request must name the
corresponding server and service function and must include any input that the
server needs. The server must use the input and provide output that the requester
can use.

For information about writing requesters, refer to IBM Programmer’s Guide to the
Server-Requester Programming Interface for the IBM Personal Computer and the
IBM 3270 PC.

Steps for Designing a Server
Follow these steps when designing a server:

1. Decide what service request (or requests) your server will handle. If your server
handles more than one service request, your server needs a service function for
each request. The service functions can be:
v Server subroutines
v Server CSECTs
v Load modules that are separate from the server

If a service function fails, all other service functions of the same server are
disabled. For recovery purposes, you might want to handle unrelated requests
in separate servers rather than in functions of the same server. You could then
isolate the servers by defining them in different initialization/termination
programs (for details, see “Steps for Designing an Initialization/Termination
Program” on page 36).

2. Decide whether the server should use 24- or 31-bit addressing. Servers can
execute in AMODE 24 or 31, and in RMODE 24 or ANY.

3. Select a name for the server. Names can have up to eight characters, including
the characters A-Z, 0-9, @, #, and $. The first character cannot be 0-9.

© Copyright IBM Corp. 1988, 2001 7

Writing a Server
Your server must follow certain rules to receive service requests and reply to them
successfully. The rules apply to using the connectivity programming request block
(CPRB).

Using the CPRB
To respond to a service request, the server must:
v Receive the service request input in the CPRB
v Perform the service
v Send a service reply in the CPRB

Figure 4 shows the process for handling service requests.

Receiving the Service Request
MVSSERV passes control to the server in key 8, problem program state, with the
register contents shown in Figure 5 on page 9.

Register 1 points to a three-word area that contains addresses of the CPRB, the
connectivity environment descriptor (CED), and a parameter list (parmlist) from the
server initialization/termination program. Of the three:

v The CPRB contains the service request.

v The CED is for MVSSERV use only. (If the server issues the DEFSERV,
SENDREQ, or CHSTRACE macros, it must pass the CED address.)

v The server parmlist can point to resources such as data sets for the server to
use. (For details about creating the server parmlist, see “Chapter 3. Designing
and Writing a Server Initialization/Termination Program” on page 35.)

Requester MVSSERV Server

Request .

.

Send request
to server

.

.

Send reply to
requester

See registers passed

See registers expected

(Figure 2-2).

(Figure 2-4).

Standard entry and linkage.
Access CPRB and server parmlist.
Pass control to service function
based on function ID in the CPRB.
Get from the CPRB the address of
the request parameters.

Get from the CPRB the address of
the request data.
Perform the service function,
using TSO resources and other
servers as needed.
Provide reply parameter, reply
data, and return code.

Figure 4. Overview of Service Request Handling

Writing a Server

8 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Mapping to the CPRB Fields
Your server can use the CHSDCPRB mapping macro to access the fields of the
CPRB. For details, see “CHSDCPRB Macro” on page 69.

Table 1 shows the CPRB with the fields that pertain to the server.

The Receive Request CPRB (Entry to Server)
Table 1. CPRB Control Block on Entry to Server

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents

0(0) 1 CRBF1 The control block’s version number (first
four bits) and modification level number
(last four bits).

1(1) 2 Reserved
3(3) 1 CRBF4 The type of request. X'01' indicates a

service request. (X'03' indicates a define
server (DEFSERV) request.)

4(4) 4 CRBCPRB Control block identifier (character string
‘CPRB’).

8(8) 8 Reserved
16(10) 8 CRBSNAME The name of the requested server.
24(18) 2 Reserved
26(1A) 2 CRBFID�1� The ID of the requested service function

(1-99)
28(1C) 12 Reserved
40(28) 4 CRBRQDLN�1� The length of the request data.
44(2C) 4 CRBRQDAT�1� The address of the request data.
48(30) 4 CRBRPDLN�2� The length of the reply data (maximum

length allowed by the requester).
52(34) 4 CRBRPDAT�3� The address of the buffer for reply data.
56(38) 4 CRBRQPLN�1� The length of the request parameters.
60(3C) 4 CRBRQPRM�1� The address of the request parameters.
64(40) 4 CRBRPPLN�2� The length of the reply parameters

(maximum length allowed by the
requester).

68(44) 4 CRBRPPRM�3� The address of the buffer for reply
parameters.

72(48) 40 Reserved

Notes:

Register

1

13

14

15

Return address

Address of server entry point

Contents

Address of CPRB

Address of CED

0

4

8

C

Hex

Address of input

Address of server
parmlist

Address of 72-byte save area

Figure 5. Registers Passed to the Server

Writing a Server

Chapter 2. Designing and Writing a Server 9

�1� Request field. Use but do not alter.

�2� Request/Reply field. The requester initializes these fields. The server may
modify the contents of these fields.

�3� Address of Reply field. Use but do not alter. The server may return
information in a buffer located at this address. Do not return more
information than will fit in the buffer (as indicated in the associated length
field).

Do not modify any fields other than those marked with a �2�.

Performing the Service
To perform a service, the server can:

v Use any MVS facilities available to a problem program.

v Define other servers to MVSSERV, using the DEFSERV macro.

v Send requests, using the SENDREQ macro, to other servers that have previously
been defined in the current MVSSERV session.

v Issue messages to the terminal, to the MVSSERV trace data set, or to both,
using the CHSTRACE macro.

Using Request and Reply buffers
Servers and requesters can use request and reply buffers to pass any agreed-upon
information. The CPRB lets you specify separate buffers for data and parameters,
but their use is unrestricted. For example, an application might use parameter
buffers to pass instructions to the server and data buffers to pass the results.
MVSSERV does not verify or modify the buffer contents.

To share data and parameters with a PC requester, the MVS server might need to
convert request data and parameters from ASCII to EBCDIC, and convert reply data
and parameters from EBCDIC to ASCII. The sample servers in Figure 7 on page 23
and Figure 8 on page 29 demonstrate how to perform such data conversion.

Sending the Service Reply
If the server can perform the requested service function, the server should:

v Move reply data, if any, to the reply data buffer pointed to by CPRB field
CRBRPDAT.

v Move reply parameters, if any, to the reply parameter buffer pointed to by CPRB
field CRBRPPRM.

v Set the actual reply data length (number of bytes) in CPRB field CRBRPDLN (the
actual length must be less than or equal to the reply data length passed from the
requester).

v Set the actual reply parameter length (number of bytes) in CPRB field
CRBRPPLN (the actual length must be less than or equal to the reply parameter
length passed from the requester).

Whether or not the server can perform the requested service function, it must:

v Put the return code expected by the requester in register 15.

v Return the reply CPRB to the requester (branch to the return address that was in
register 14 on entry to the server).

The registers should have the following contents when the server ends:

Register 13 Register Address of 72-byte save area

Writing a Server

10 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Register 14 Register Return address

Register 15 Register Server return code

Table 2 shows the CPRB fields that the server uses in its reply.

The Send Reply CPRB (Exit from Server)
Table 2. CPRB Control Block on Exit from the Server

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents

0(0) 48 Reserved
48(30) 4 CRBRPDLN�1� Specify the actual length of the reply data.
52(34) 12 Reserved
64(40) 4 CRBRPPLN�1� Specify the actual length of the reply

parameters.
68(44) 44 Reserved

Note:

�1� The actual length cannot exceed the initial value (maximum allowed by the
requester).

Sending a Service Request
In the process of handling a service request, a server can issue its own service
requests to another MVS server defined in the same MVSSERV session. A server
can use the results of its request in its reply.

To send a service request from a server, use the CHSDCPRB macro to create a
CPRB and the SENDREQ macro to initialize and send the CPRB. For details, see
“SENDREQ Macro” on page 73. The SENDREQ macro sends a service request to
another server in a CPRB identical to the one shown in Table 1 on page 9.

Receiving a Service Reply
On return from the SENDREQ macro, an updated CPRB and reply buffers are
returned, indicating the status of the requested service. Table 3 shows the CPRB on
return from issuing a service request.

The Receive Reply CPRB (Entry to Server)
Table 3. CPRB Control Block with Reply from Another Server

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents

0(0) 8 Reserved
8(8) 4 CRBSRTNC�1� The server return code from Register 15.

(Filled in by MVSSERV.)
12(C) 4 CRBCRTNC�2� The return code from MVSSERV. For a

list of return codes, see Chapter 8.
MVSSERV Return Codes.

16(10) 32 Reserved
48(30) 4 CRBRPDLN�3� The length of the reply data.
52(34) 12 Reserved
64(40) 4 CRBRPPLN�3� The length of the reply parameters.
68(44) 44 Reserved

Writing a Server

Chapter 2. Designing and Writing a Server 11

Notes:

�1� Check for a return code from the server.

�2� Check for a return code from MVSSERV.

�3� Use to obtain reply data and parameters from their buffers.

Issuing Messages
Your servers can issue messages to the terminal, to the MVSSERV trace data set,
or to both. To issue a message and specify its destination, use the CHSTRACE
macro.

For details of the CHSTRACE macro, see “Chapter 7. Macro Syntax and
Parameters” on page 69. For information about the MVSSERV trace data set, see
“Trace Data Set” on page 61.

The Server Recovery Routine
Servers can have their own recovery routines. If a server fails and does not recover,
MVSSERV traps the error, provides a dump, and prevents that server or any other
servers defined by the same initialization/termination program from processing
further requests during that MVSSERV session.

To establish a recovery routine, servers must issue the ESTAE macro. The server
recovery routine should do the following:

v Record pertinent diagnostic information in the SDWA and VRA, such as the
caller, the current module in control, and the input parameters.

v Optionally, specify a dump (if not, MVSSERV provides one).

v If the failure is recoverable, set return parameters specifying that a retry is to be
made. The retry routine must return control to MVSSERV with the server’s return
code.

v If the failure is not recoverable, percolate to MVSSERV.

For more information about using the ESTAE macro and recovery routines, refer to
z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN.

For an example of a server recovery routine, see Figure 6 on page 14.

Compiling or Assembling a Server
After writing a server, you must compile or assemble it and link-edit it. For
information about preparing and running a program in TSO/E, refer to z/OS TSO/E
Programming Guide.

Sample Servers
The sample server in Figure 6 corresponds to the sample assembler requester in
the IBM Programmer’s Guide to the Server-Requester Programming Interface for
the IBM Personal Computer and the IBM 3270 PC. The server, IBMABASE, has
two service functions:

v Function 1 sends a request to server IBMABAS1 in Figure 7 to:
– Retrieve a record from a customer records data set on MVS
– Translate the record into ASCII
– Send the record to the requester for processing

v Function 2 sends a request to server IBMABAS2 in Figure 8 to:

Writing a Server

12 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

– Receive a record with a positive balance from the requester
– Translate the record back into EBCDIC
– Put the record into an accounts receivable data set on MVS

The initialization/termination program for these servers is shown in Figure 14 on
page 43.

The recovery routine in IBMABASE covers errors in the server itself. Errors in the
called servers (IBMABAS1 and IBMABAS2) are handled by MVSSERV’s recovery
routine, which informs IBMABASE if they fail.

Sample Servers

Chapter 2. Designing and Writing a Server 13

Sample Server IBMABASE

IBMABASE CSECT
IBMABASE AMODE 24
IBMABASE RMODE 24

STM 14,12,12(13) Save the caller's registers.
LR 12,15 Establish addressability within
USING IBMABASE,12 this CSECT.
L 2,0(,1) Obtain the CPRB address.
USING CHSDCPRB,2 Establish addressability to it.
L 3,4(,1) Obtain the CED address.
USING CHSCED,3 Establish addressability to it.
L 4,8(,1) Obtain server parameter address.
USING PARAMETERS,4 Establish addressability to them.
L 11,DYNAMIC_ADDR Obtain the address for the dynamic

* storage.
USING DYNAREA,11 Establish addressability to the

* dynamic area.
ST 13,BASESAVE+4 Save the callers savearea address.
LA 15,BASESAVE Obtain our savearea address.
ST 15,8(,13) Chain it in the caller's savearea.
LR 13,15 Point register 13 to our savearea.
ST 3,CED_ADDR Save the address of the CED.
EJECT

* TITLE: IBMABASE MAINLINE
*
* LOGIC: Determine the function requested, and invoke the appropriate
* server.
*
* OPERATION:
* 1. Establish a recovery environment.
* 2. If the data sets are not open:
* - Open them.
* 3. Determine the function requested.
* 4. If function 1 is requested:
* - Issue the CHSTRACE macro to output a message to the TRACE
* data set.
* - Issue the SENDREQ macro to invoke the appropriate server.
* - Copy IBMABAS1's reply into the requester CPRB.
* 5. If function 2 is requested:
* - Issue the CHSTRACE macro to output a message to the TRACE
* data set.
* - Issue the SENDREQ macro to invoke the appropriate server.
* 6. Else an invalid function is requested:
* - Issue the CHSTRACE macro to output a message to the TRACE
* data set.
* - Set an error return code.
* 7. Check the SENDREQ return code:
* - If the SENDREQ failed, then set an error return code.
* 8. Cancel the recovery environment.
* 9. Return to the caller with return code.

SPACE 2

* Establish a recovery environment

SPACE
ESTAE RECOVERY,PARAM=(11),MF=(E,ESTLIST)
EJECT

Figure 6. Sample Server IBMABASE (Part 1 of 9)

Sample Servers

14 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

* OPEN the data sets.

SPACE
CLI STATUS,OPENED Are the data sets opened?
BE OPEN Yes, then don't try to open them.
L 6,DCBIN_ADDR Load the INPUT DCB address.
L 7,DCBOUT_ADDR Load the OUTPUT DCB address.
L 8,DCBLOG_ADDR Load the LOG DCB address.
L 9,OPEN_ADDR Load the list form address.
OPEN ((6),,(7),,(8)),MF=(E,(9)) Open the data sets.
MVI STATUS,OPENED Indicate that they are open.
EJECT

* Determine the FUNCTION requested.

SPACE
OPEN DS 0H

LA 5,1 Load the first function ID.
CH 5,CRBFID Is function one requested?
BE FUNCTION_1 Yes, branch to the function.
LA 5,2 Load the second function ID.
CH 5,CRBFID Is function two requested?
BE FUNCTION_2 Yes, branch to the function.
SPACE 3

**
* Issue the CHSTRACE macro to output the INVALID FUNCTION message.
**

SPACE
CHSTRACE DEST=TRACE,CED=CHSCED,BUFFER=INV_MSG, *

BUFLEN=MSG_LEN,MF=(E,CHSLIST,COMPLETE)
B ERROR Exit the server.
EJECT

FUNCTION_1 DS 0H
SPACE

Figure 6. Sample Server IBMABASE (Part 2 of 9)

Sample Servers

Chapter 2. Designing and Writing a Server 15

**
* Issue the CHSTRACE macro to output the FUNCTION 1 message.
**

SPACE
CHSTRACE DEST=TRACE,CED=CHSCED,BUFFER=FUN1_MSG, *

BUFLEN=MSG_LEN,MF=(E,CHSLIST,COMPLETE)
**
* Issue the SENDREQ macro to invoke IBMABAS1.
**

SPACE
DROP 2
LA 5,CPRBSTOR Obtain the address for the new

* CPRB.
USING CHSDCPRB,5 Establish addressability to it.
SENDREQ CPRB=CHSDCPRB,CED=CHSCED,SERVER=SERVER1_NAME, *

REQPARM=(CRBRQPRM-CHSDCPRB(,2),CRBRQPLN-CHSDCPRB(,2)), *
REPDATA=(CRBRPDAT-CHSDCPRB(,2),CRBRPDLN-CHSDCPRB(,2)), *
MF=(E,SENDLIST,COMPLETE)

**
* Copy IBMABAS1's reply into the REQUESTER CPRB.
**

SPACE
L 8,CRBRPDAT Obtain the address of the reply

* data.
L 6,CRBRPDLN Obtain the length of the reply

* data.
DROP 5
USING CHSDCPRB,2 Restore addressability to the

* requester CPRB.
ST 6,CRBRPDLN Store the reply data length in the

* CPRB for the requester.
L 7,CRBRPDAT Obtain the address to place the

* reply data.

Figure 6. Sample Server IBMABASE (Part 3 of 9)

Sample Servers

16 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

BCTR 6,0
EX 6,MOVDATA1 Copy the reply data into the CPRB

* for the requester.
B EXIT

MOVDATA1 MVC 0(0,7),0(8)
EJECT

FUNCTION_2 DS 0H
SPACE

**
* Issue the CHSTRACE macro to output the FUNCTION 2 message.
**

SPACE
CHSTRACE DEST=TRACE,CED=CHSCED,BUFFER=FUN2_MSG, *

BUFLEN=MSG_LEN,MF=(E,CHSLIST,COMPLETE)
**
* Issue the SENDREQ macro to invoke IBMABAS2.
**

SPACE
DROP 2
LA 5,CPRBSTOR Obtain the address for the new

* CPRB.
USING CHSDCPRB,5 Establish addressability to it.
SENDREQ CPRB=CHSDCPRB,CED=CHSCED,SERVER=SERVER2_NAME, *

REQPARM=(CRBRQPRM-CHSDCPRB(,2),CRBRQPLN-CHSDCPRB(,2)), *
REQDATA=(CRBRQDAT-CHSDCPRB(,2),CRBRQDLN-CHSDCPRB(,2)), *
MF=(E,SENDLIST,COMPLETE)

EJECT

Figure 6. Sample Server IBMABASE (Part 4 of 9)

Sample Servers

Chapter 2. Designing and Writing a Server 17

**
* Leave the server.
**

SPACE
EXIT DS 0H

LTR 15,15 Check SENDREQ return code.
BNZ ERROR Error? - Then set bad return code.
L 15,CRBSRTNC Otherwise obtain the SERVER return

* code.
B LEAVE Exit the SERVER.

ERROR DS 0H
LA 15,8 Set bad return code.

LEAVE DS 0H
LR 2,15 Save the return code.
ESTAE 0 Remove the recovery environment.
LR 15,2 Restore the return code.
L 13,BASESAVE+4 Restore caller's savearea address.
L 14,12(,13) Restore the caller's registers
LM 0,12,20(13) except for 15 (return code).
BR 14 Return to caller with return code.
EJECT

* TITLE: IBMABASE RECOVERY
*
* LOGIC: Issue a message to the terminal and trace data set indicating
* that the server ABENDed and is no longer available.
*
* OPERATION:
* 1. If an SDWA is available then:
* - Establish addressability to the recovery routine parameters
* (IBMABASE dynamic storage address).
* - Obtain the address of the CED.
* - Issue the CHSTRACE macro to output a message to the TERMINAL
* and the TRACE data set.
* - Issue the SETRP macro to issue a DUMP and CONTINUE WITH
* TERMINATION.
* 2. Else an SDWA is not available so:
* - Set the return code to indicate to CONTINUE WITH TERMINATION.
* 3. Return to the caller (with return code in no SDWA case).
**

Figure 6. Sample Server IBMABASE (Part 5 of 9)

Sample Servers

18 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

SPACE 2
RECOVERY DS 0H

USING RECOVERY,15
C 0,=F'12' SDWA supplied?
BE NO_SDWA No, then leave recovery.
STM 14,12,12(13)
LR 12,15
USING RECOVERY,12
DROP 15
L 11,0(,1) Obtain the recovery parameters

* (Dynamic storage address).
**
* Use IBMABAS1's savearea for the recovery savearea.
**

SPACE
ST 13,BAS1SAVE+4 Save the callers savearea address.
LA 15,BAS1SAVE Obtain our savearea address.
ST 15,8(,13) Chain it in the caller's savearea.
LR 13,15 Point register 13 to our savearea.
EJECT
LR 2,1 Save the address of the SDWA.
L 3,CED_ADDR Obtain the address of the CED.
USING CHSCED,3 Establish addressability to it.
SPACE

**
*
* Here is where diagnostic information that would useful in debugging
* any problems would be placed in the SDWA and the VRA.
*
**
* Issue the CHSTRACE macro to output the ABEND message.
**

SPACE
CHSTRACE DEST=BOTH,CED=CHSCED,BUFFER=REC_MSG, *

BUFLEN=MSG_LEN,MF=(E,CHSLIST,COMPLETE)
**
* Issue the SETRP macro to issue a DUMP and CONTINUE WITH TERMINATION.
**

SETRP WKAREA=(2),DUMP=YES,RC=0
EJECT

**
* Leave the recovery routine.
**

SPACE
L 13,BAS1SAVE+4 Restore caller's savearea address.
LM 14,12,12(13) Restore the caller's registers.

NO_SDWA DS 0H
SLR 15,15 Indicate CONTINUE WITH TERMINATION

* for the no SWDA case.
BR 14
EJECT

**
* Constants.
**

SPACE
**
* SERVER names.
**

SPACE
SERVER_NAME DC CL8'IBMABASE' Server name.
SERVER1_NAME DC CL8'IBMABAS1' Server name.
SERVER2_NAME DC CL8'IBMABAS2' Server name.

SPACE

Figure 6. Sample Server IBMABASE (Part 6 of 9)

Sample Servers

Chapter 2. Designing and Writing a Server 19

**
* TRACE data set messages.
**

SPACE
FUN1_MSG DC CL80' Server IBMABASE entered. SENDREQ issued for IBMABA*

S1.'
FUN2_MSG DC CL80' Server IBMABASE entered. SENDREQ issued for IBMABA*

S2.'
INV_MSG DC CL80' Server IBMABASE entered. An invalid function was r*

equested.'
REC_MSG DC CL80' Server IBMABASE ABENDed. The server is no longer a*

vailable.'
MSG_LEN DC A(*-REC_MSG) Length of message

EJECT
**
* Dynamic Area.
*
* NOTE: This mapping is shared between IBMABASE, IBMABAS1 and
* IBMABAS2. Any change must be incorporated into all modules.
**

SPACE
DYNAREA DSECT DYNAMIC area common mapping

SPACE
BASESAVE DS 18F Save area.
BASESUBS DS 15F Subroutine save area.

SPACE
BAS1SAVE DS 18F Save area.

SPACE
BAS2SAVE DS 18F Save area.

SPACE
CED_ADDR DS F Address of the CED.

SPACE
WORKAREA DS D Work area for CVB and CVD.

SPACE
BINARY_BAL DS F Holds binary form of the balance.

SPACE
ED_AREA DS 0CL8 EDIT instruction work area.

DS CL1 Fill character position.
DS CL3 Digit positions.

ED_RESULT DS CL4 EDIT result digits.
SPACE

STATUS DS X Status word.
OPENED EQU X'01' Data sets are opened.
CLOSED EQU X'00' Data sets are closed.

SPACE
CPRBSTOR DS 0D Storage for the CPRB to be used
* for IBMABAS1 and IBMABAS2.

ORG *+CRBSIZE
CPRBEND DS 0D

Figure 6. Sample Server IBMABASE (Part 7 of 9)

Sample Servers

20 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

**
* Issue the CHSTRACE macro list form to supply a parameter list.
**

SPACE
CHSTRACE MF=(L,CHSLIST)
SPACE

**
* Issue the SENDREQ macro list form to supply a parameter list.
**

SPACE
SENDREQ MF=(L,SENDLIST)
SPACE

**
* Issue the ESTAE macro list form to supply a parameter list.
**

SPACE
ESTLIST ESTAE MF=L

EJECT

Figure 6. Sample Server IBMABASE (Part 8 of 9)

Sample Servers

Chapter 2. Designing and Writing a Server 21

* Server parameter list mapping.

SPACE
PARAMETERS DSECT
DYNAMIC_ADDR DS A Dynamic Storage address.
DCBIN_ADDR DS A INPUT DCB address.
DCBOUT_ADDR DS A OUTPUT DCB address.
DCBLOG_ADDR DS A LOG DCB address.
OPEN_ADDR DS A OPEN list form address.
CLOSE_ADDR DS A CLOSE list form address.

SPACE

* CPRB reply buffer mapping.

SPACE
REPLY_BUFFER DSECT
REPLY DS 0CL109
TRANS_PART DS 0CL105
CUST_NAME DS CL25
CUST_ADDR DS CL25
CUST_CITY DS CL15
CUST_STATE DS CL15
CUST_ZIP DS CL9
CUST_ACCT DS CL16
CUST_BAL DS CL4
REPLY_LEN EQU *-REPLY

EJECT

* CPRB mapping

SPACE
CHSDCPRB DSECT=YES
EJECT

**
* CED mapping.
**

SPACE
CHSCED DSECT=YES
EJECT

**
* SDWA mapping.
**

SPACE
IHASDWA
END IBMABASE

Figure 6. Sample Server IBMABASE (Part 9 of 9)

Sample Servers

22 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Sample Server IBMABAS1

IBMABAS1 CSECT
IBMABAS1 AMODE 24
IBMABAS1 RMODE 24

STM 14,12,12(13) Save the caller's registers.
LR 12,15 Establish addressability within
USING IBMABAS1,12 this CSECT.
L 2,0(,1) Obtain the CPRB address.
USING CHSDCPRB,2 Establish addressability to it.
L 3,4(,1) Obtain the CED address.
USING CHSCED,3 Establish addressability to it.
L 4,8(,1) Obtain server parameter address.
USING PARAMETERS,4 Establish addressability to them.
L 11,DYNAMIC_ADDR Obtain the address for the dynamic

* storage.
USING DYNAREA,11 Establish addressability to the

* dynamic area.
ST 13,BAS1SAVE+4 Save the callers savearea address.
LA 15,BAS1SAVE Obtain our savearea address.
ST 15,8(,13) Chain it in the caller's savearea.
LR 13,15 Point register 13 to our savearea.
EJECT

* TITLE: IBMABAS1 MAINLINE
*
* LOGIC: Read a record from the input file.
*
* OPERATION:
* 1. Issue the CHSTRACE macro to output a message to the TRACE data
* set.
* 2. Issue the GET macro to read an input file record.
* 3. If the end of file was encountered:
* - Issue the CHSTRACE macro to output a message to the TRACE
* data set.
* - Close the data sets.
* - Set end of file return code
* 4. Else, no end of file encountered:
* - If the transaction should be logged:
* a. Issue the PUT macro to output the log message to the
* log file.
* - Translate the reply data into ASCII.
* 5. Return to the caller with return code.

SPACE

Figure 7. Sample Server IBMABAS1 (Part 1 of 6)

Sample Servers

Chapter 2. Designing and Writing a Server 23

**
* Issue the CHSTRACE macro to output the IBMABAS1 message.
**

SPACE
CHSTRACE DEST=TRACE,CED=CHSCED,BUFFER=BAS1_MSG, *

BUFLEN=MSG_LEN,MF=(E,CHSLIST,COMPLETE)
L 5,CRBRPDAT Obtain the address of the reply

* buffer.
USING REPLY_BUFFER,5 Establish addressability to it.
SPACE
L 6,DCBIN_ADDR Obtain INPUT DCB address.
USING IHADCB,6
MVC DCBEODA,=AL3(END_OF_FILE) Set end of file exit.
SPACE

**
* Issue the GET macro to read an input record.
**

SPACE
GET (6),REPLY Get the record.
DROP 6
SPACE
L 6,CRBRQPRM Load request parameter address.
CLI 0(6),X'01' Should we log the transaction?
BNE NO_LOG No, branch around logging.
EJECT

Figure 7. Sample Server IBMABAS1 (Part 2 of 6)

Sample Servers

24 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

**
* LOG the transaction. Issue the PUT macro to output records to the
* log data set.
**

SPACE
L 6,DCBLOG_ADDR Obtain LOG DCB address.
PUT (6),INPUT_LOG Output the log message and
PUT (6),REPLY the record.
PUT (6),BLANK Insert a blank line.
EJECT

**
* Convert the EBCDIC message to ASCII.
**

SPACE
NO_LOG DS 0H

TR TRANS_PART,TRANS_ASCII Translate the record to ASCII.
CLI CUST_BAL,X'60' Check for a minus sign.
BNE DO_PACK
NI CUST_BAL+3,X'DF' Allow CVB to make it negative.
SPACE

**
* Convert the balance to binary.
**

SPACE
DO_PACK DS 0H

PACK WORKAREA(8),CUST_BAL(4) Convert balance to decimal.
CVB 7,WORKAREA Convert balance to binary.
ST 7,BINARY_BAL Save the balance.
SPACE

* Move the balance into the reply area, taking into account the PC's
* method of reverse byte retrieval.

SPACE
MVC CUST_BAL(1),BINARY_BAL+3 Place it into the reply.
MVC CUST_BAL+1(1),BINARY_BAL+2 Place it into the reply.
MVC CUST_BAL+2(1),BINARY_BAL+1 Place it into the reply.
MVC CUST_BAL+3(1),BINARY_BAL Place it into the reply.
SPACE

* Store the reply statistics in the CPRB.

SPACE
LA 6,REPLY_LEN Get the length of the reply,
ST 6,CRBRPDLN and store it into the CPRB.
LA 6,0 Set the reply parameter length,
ST 6,CRBRPPLN and store it into the CPRB.
SLR 15,15 Set a good return code.
B EXIT
EJECT

**
* END OF FILE routine.
**

SPACE
END_OF_FILE DS 0H

SPACE
**
* Issue the CHSTRACE macro to output the END OF FILE message.
**

SPACE
CHSTRACE DEST=TRACE,CED=CHSCED,BUFFER=EOF_MSG, *

BUFLEN=MSG_LEN,MF=(E,CHSLIST,COMPLETE)

Figure 7. Sample Server IBMABAS1 (Part 3 of 6)

Sample Servers

Chapter 2. Designing and Writing a Server 25

**
* Close the data sets.
**

SPACE
L 6,DCBIN_ADDR Load the INPUT DCB address.
L 7,DCBOUT_ADDR Load the OUTPUT DCB address.
L 8,DCBLOG_ADDR Load the LOG DCB address.
L 9,CLOSE_ADDR Load the list form address.
CLOSE ((6),,(7),,(8)),MF=(E,(9)) Close the data sets.
MVI STATUS,CLOSED Indicate that they are closed.
SPACE
LA 15,4 Set end of file return code.
EJECT

**
* Leave the server.
**

SPACE
EXIT DS 0H

L 13,BAS1SAVE+4 Restore caller's savearea address.
L 14,12(,13) Restore the caller's registers
LM 0,12,20(13) except for 15 (return code).
BR 14 Return to caller with return code.
EJECT

**
* Constants.
**

SPACE

* EBCDIC to ASCII translate table.

SPACE
TRANS_ASCII DS 0CL256

DC X'00010203CF09D37FD4D5C30B0C0D0E0F'
DC X'10111213C7B408C91819CCCD831DD21F'
DC X'81821C84860A171B89919295A2050607'
DC X'E0EE16E5D01EEA048AF6C6C21415C11A'
DC X'20A6E180EB909FE2AB8B9B2E3C282B7C'
DC X'26A9AA9CDBA599E3A89E21242A293B5E'
DC X'2D2FDFDC9ADDDE989DACBA2C255F3E3F'
DC X'D78894B0B1B2FCD6FB603A2340273D22'
DC X'F861626364656667686996A4F3AFAEC5'
DC X'8C6A6B6C6D6E6F7071729787CE93F1FE'
DC X'C87E737475767778797AEFC0DA5BF2F9'
DC X'B5B6FDB7B8B9E6BBBCBD8DD9BF5DD8C4'
DC X'7B414243444546474849CBCABEE8ECED'
DC X'7D4A4B4C4D4E4F505152A1ADF5F4A38F'
DC X'5CE7535455565758595AA0858EE9E4D1'
DC X'30313233343536373839B3F7F0FAA7FF'
SPACE

**
* TRACE data set messages.
**

SPACE
BAS1_MSG DC CL80' Server IBMABAS1 entered.'
EOF_MSG DC CL80' End of file encountered on customer records.'
MSG_LEN DC A(*-EOF_MSG) Length of message

SPACE

Figure 7. Sample Server IBMABAS1 (Part 4 of 6)

Sample Servers

26 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

**
* LOG data set messages.
**

SPACE
INPUT_LOG DS 0CL109 Input log message.

DC CL109'The following customer record was read from the cu*
stomer files.'

SPACE
BLANK DS 0CL109 Blank line

DC CL109' '
EJECT

**
* Dynamic Area.
*
* NOTE: This mapping is shared between IBMABASE, IBMABAS1 and
* IBMABAS2. Any change must be incorporated into all modules.
**

SPACE
DYNAREA DSECT DYNAMIC area common mapping

SPACE
BASESAVE DS 18F Save area.
BASESUBS DS 15F Subroutine save area.

SPACE
BAS1SAVE DS 18F Save area.

SPACE
BAS2SAVE DS 18F Save area.

SPACE
CED_ADDR DS F Address of the CED.

SPACE
WORKAREA DS D Work area for CVB and CVD.

SPACE
BINARY_BAL DS F Holds binary form of the balance.

SPACE
ED_AREA DS 0CL8 EDIT instruction work area.

DS CL1 Fill character position.
DS CL3 Digit positions.

ED_RESULT DS CL4 EDIT result digits.
SPACE

STATUS DS X Status word.
OPENED EQU X'01' Data sets are opened.
CLOSED EQU X'00' Data sets are closed.

SPACE
CPRBSTOR DS 0D Storage for the CPRB to be used
* for IBMABAS1 and IBMABAS2.

ORG *+CRBSIZE
CPRBEND DS 0D
**
* Issue the CHSTRACE macro list form to supply a parameter list.
**

SPACE
CHSTRACE MF=(L,CHSLIST)
SPACE

**
* Issue the SENDREQ macro list form to supply a parameter list.
**

SPACE
SENDREQ MF=(L,SENDLIST)
SPACE

**
* Issue the ESTAE macro list form to supply a parameter list.
**

SPACE
ESTLIST ESTAE MF=L

EJECT

Figure 7. Sample Server IBMABAS1 (Part 5 of 6)

Sample Servers

Chapter 2. Designing and Writing a Server 27

Sample Server IBMABAS2

* Server parameter list mapping.

SPACE
PARAMETERS DSECT
DYNAMIC_ADDR DS A Dynamic Storage address.
DCBIN_ADDR DS A INPUT DCB address.
DCBOUT_ADDR DS A OUTPUT DCB address.
DCBLOG_ADDR DS A LOG DCB address.
OPEN_ADDR DS A OPEN list form address.
CLOSE_ADDR DS A CLOSE list form address.

SPACE

* CPRB reply buffer mapping.

SPACE
REPLY_BUFFER DSECT
REPLY DS 0CL109
TRANS_PART DS 0CL105
CUST_NAME DS CL25
CUST_ADDR DS CL25
CUST_CITY DS CL15
CUST_STATE DS CL15
CUST_ZIP DS CL9
CUST_ACCT DS CL16
CUST_BAL DS CL4
REPLY_LEN EQU *-REPLY

EJECT

* CPRB mapping

SPACE
CHSDCPRB DSECT=YES
EJECT

* CED mapping

SPACE
CHSCED DSECT=YES
EJECT

* DCB mapping

SPACE
DCBD DSORG=PS
END IBMABAS1

Figure 7. Sample Server IBMABAS1 (Part 6 of 6)

Sample Servers

28 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

IBMABAS2 CSECT
IBMABAS2 AMODE 24
IBMABAS2 RMODE 24

STM 14,12,12(13) Save the caller's registers.
LR 12,15 Establish addressability within
USING IBMABAS2,12 this CSECT.
L 2,0(,1) Obtain the CPRB address.
USING CHSDCPRB,2 Establish addressability to it.
L 3,4(,1) Obtain the CED address.
USING CHSCED,3 Establish addressability to it.
L 4,8(,1) Obtain server parameter address.
USING PARAMETERS,4 Establish addressability to them.
L 11,DYNAMIC_ADDR Obtain the address for the dynamic

* storage.
USING DYNAREA,11 Establish addressability to the

* dynamic area.
ST 13,BAS2SAVE+4 Save the callers savearea address.
LA 15,BAS2SAVE Obtain our savearea address.
ST 15,8(,13) Chain it in the caller's savearea.
LR 13,15 Point register 13 to our savearea.
EJECT

* TITLE: IBMABAS2 MAINLINE
*
* LOGIC: Determine the function requested, and perform that function.
*
* OPERATION:
* 1. Issue the CHSTRACE macro to output a message to the TRACE data
* set.
* 2. Translate the request data into EBCDIC.
* 3. Issue the PUT macro to output the record to the output file.
* - If the transaction should be logged:
* a. Issue the PUT macro to output the log message to the
* log file.
* 4. Return to the caller with return code.

SPACE
**
* Issue the CHSTRACE macro to output the IBMABAS2 message.
**

SPACE
CHSTRACE DEST=TRACE,CED=CHSCED,BUFFER=BAS2_MSG, *

BUFLEN=MSG_LEN,MF=(E,CHSLIST,COMPLETE)
L 5,CRBRQDAT Obtain the address of the request

* buffer.
USING REPLY_BUFFER,5 Establish addressability to it.
SPACE

* Convert the ASCII message to EBCDIC.

SPACE
TR TRANS_PART,TRANS_EBCDIC Translate the record to EBCDIC.
SPACE

* Move the reply balance into the work area, taking into account the
* PC's method of reverse byte retrieval.

SPACE
MVC BINARY_BAL(1),CUST_BAL+3 Obtain customer balance.
MVC BINARY_BAL+1(1),CUST_BAL+2 Obtain customer balance.
MVC BINARY_BAL+2(1),CUST_BAL+1 Obtain customer balance.
MVC BINARY_BAL+3(1),CUST_BAL Obtain customer balance.
SPACE

Figure 8. Sample Server IBMABAS2 (Part 1 of 6)

Sample Servers

Chapter 2. Designing and Writing a Server 29

* Convert the balance to EBCDIC

SPACE
L 7,BINARY_BAL Prepare for CVD.
CVD 7,WORKAREA Convert the balance to decimal.
MVC ED_AREA,ED_PATTERN Copy in the EDIT pattern.
ED ED_AREA,WORKAREA+4 EDIT the balance.
MVC CUST_BAL,ED_RESULT Place the results in the record.
SPACE

* Issue the PUT macro to write the record.

SPACE
L 6,DCBOUT_ADDR Obtain OUTPUT DCB address.
PUT (6),REPLY Output the record.
L 6,CRBRQPRM Load request parameter address.
CLI 0(6),X'01' Should we log the transaction?
BNE NO_LOG No, branch around logging.
EJECT

* LOG the transaction. Issue the PUT macro to output records to the
* log data set.

SPACE
L 6,DCBLOG_ADDR Obtain LOG DCB address.
PUT (6),OUTPUT_LOG Output the log message and
PUT (6),REPLY the record.
PUT (6),BLANK Insert a blank line.
EJECT

* Leave the server.

SPACE
NO_LOG DS 0H

LA 15,0 Set the return code.
EXIT DS 0H

L 13,BAS2SAVE+4 Restore caller's savearea address.
L 14,12(,13) Restore the caller's registers
LM 0,12,20(13) except for 15 (return code).
BR 14 Return to caller with return code.
EJECT

**
* Constants.
**

SPACE

Figure 8. Sample Server IBMABAS2 (Part 2 of 6)

Sample Servers

30 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

* ASCII to EBCDIC translate table.

SPACE
TRANS_EBCDIC DS 0CL256

DC X'00010203372D2E2F1605250B0C0D0E0F'
DC X'101112133C3D322618193F27221D351F'
DC X'405A7F7B5B6C507D4D5D5C4E6B604B61'
DC X'F0F1F2F3F4F5F6F7F8F97A5E4C7E6E6F'
DC X'7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6'
DC X'D7D8D9E2E3E4E5E6E7E8E9ADE0BD5F6D'
DC X'79818283848586878889919293949596'
DC X'979899A2A3A4A5A6A7A8A9C04FD0A107'
DC X'4320211C23EB249B7128384990BAECDF'
DC X'45292A9D722B8A9A6756644A53685946'
DC X'EADA2CDE8B5541FE5851524869DB8E8D'
DC X'737475FA15B0B1B3B4B56AB7B8B9CCBC'
DC X'AB3E3B0ABF8F3A14A017CBCA1A1B9C04'
DC X'34EF1E0608097770BEBBAC5463656662'
DC X'30424757EE33B6E1CDED3644CMVSSERV31AA'
DC X'FC9EAE8CDDDC39FB80AFFD7876B29FFF'
SPACE

ED_PATTERN DC X'4020202020202020' Edit pattern for balances.
SPACE

**
* TRACE data set messages.
**

SPACE
BAS2_MSG DC CL80' Server IBMABAS2 entered.'
MSG_LEN DC A(*-BAS2_MSG) Length of message

SPACE
**
* LOG data set messages.
**

SPACE
OUTPUT_LOG DS 0CL109 Output log message.

DC CL109'The following customer record was written to the b*
illing file.'

SPACE
BLANK DS 0CL109 Blank line

DC CL109' '
EJECT

Figure 8. Sample Server IBMABAS2 (Part 3 of 6)

Sample Servers

Chapter 2. Designing and Writing a Server 31

**
* Dynamic Area.
*
* NOTE: This mapping is shared between IBMABASE, IBMABAS1 and
* IBMABAS2. Any change must be incorporated into all modules.
**

SPACE
DYNAREA DSECT DYNAMIC area common mapping

SPACE
BASESAVE DS 18F Save area.
BASESUBS DS 15F Subroutine save area.

SPACE
BAS1SAVE DS 18F Save area.

SPACE
BAS2SAVE DS 18F Save area.

SPACE
CED_ADDR DS F Address of the CED.

SPACE
WORKAREA DS D Work area for CVB and CVD.

SPACE
BINARY_BAL DS F Holds binary form of the balance.

SPACE
ED_AREA DS 0CL8 EDIT instruction work area.

DS CL1 Fill character position.
DS CL3 Digit positions.

ED_RESULT DS CL4 EDIT result digits.

Figure 8. Sample Server IBMABAS2 (Part 4 of 6)

Sample Servers

32 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

SPACE
STATUS DS X Status word.
OPENED EQU X'01' Data sets are opened.
CLOSED EQU X'00' Data sets are closed.

SPACE
CPRBSTOR DS 0D Storage for the CPRB to be used
* for IBMABAS1 and IBMABAS2.

ORG *+CRBSIZE
CPRBEND DS 0D

SPACE
**
* Issue the CHSTRACE macro list form to supply a parameter list.
**

SPACE
CHSTRACE MF=(L,CHSLIST)
SPACE

**
* Issue the SENDREQ macro list form to supply a parameter list.
**

SPACE
SENDREQ MF=(L,SENDLIST)
SPACE

**
* Issue the ESTAE macro list form to supply a parameter list.
**

SPACE
ESTLIST ESTAE MF=L

EJECT

* Server parameter list mapping.

SPACE
PARAMETERS DSECT
DYNAMIC_ADDR DS A Dynamic Storage address.
DCBIN_ADDR DS A INPUT DCB address.
DCBOUT_ADDR DS A OUTPUT DCB address.
DCBLOG_ADDR DS A LOG DCB address.
OPEN_ADDR DS A OPEN list form address.
CLOSE_ADDR DS A CLOSE list form address.

SPACE

* CPRB reply buffer mapping.

SPACE
REPLY_BUFFER DSECT
REPLY DS 0CL109
TRANS_PART DS 0CL105
CUST_NAME DS CL25
CUST_ADDR DS CL25
CUST_CITY DS CL15
CUST_STATE DS CL15
CUST_ZIP DS CL9
CUST_ACCT DS CL16
CUST_BAL DS CL4
REPLY_LEN EQU *-REPLY

EJECT

Figure 8. Sample Server IBMABAS2 (Part 5 of 6)

Sample Servers

Chapter 2. Designing and Writing a Server 33

* CPRB mapping

SPACE
CHSDCPRB DSECT=YES
EJECT

* CED mapping

SPACE
CHSCED DSECT=YES
END IBMABAS2

Figure 8. Sample Server IBMABAS2 (Part 6 of 6)

Sample Servers

34 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Chapter 3. Designing and Writing a Server
Initialization/Termination Program

Program Design . 35
Steps for Designing an Initialization/Termination Program 36

Writing an Initialization/Termination Program 36
Initialization . 37

Input to the Initialization/Termination Program 37
Loading the Servers . 38
Obtaining Resources. 38
Defining a Server . 39
Sending a Service Request 40
Receiving a Service Reply. 40
Issuing Messages . 40
Recovery . 40
Ending Initialization . 40

Termination . 41
Freeing Resources . 42
Deleting the Servers . 42

Compiling or Assembling an Initialization/Termination Program 42
Sample Initialization/Termination Program 42

This chapter describes the steps to follow when designing and writing server
initialization/termination programs.

Program Design
The initialization/termination programs are logically grouped in separate subtasks.
They define one or more servers to MVSSERV, and optionally load the servers and
provide resources for them. When MVSSERV ends, it re-invokes your
initialization/termination programs to free any server resources and terminate the
servers.

Figure 9 shows the position of initialization/termination programs in the logical
MVSSERV task structure.

When you design an initialization/termination program, you need to consider what
servers it will define, what resources the servers require, and how to package the
initialization/termination program in relation to the servers.

Main Task

MVSSERV

Subtasks

Initialization/Termination Program Initialization/Termination ProgramInitialization/Termination Program

.

ServersServers Servers

.

.

.

.

.

.

.

.

.

Figure 9. MVSSERV Logical Task Structure

© Copyright IBM Corp. 1988, 2001 35

Steps for Designing an Initialization/Termination Program
Follow these steps when designing an initialization/termination program:

1. Decide what servers the initialization/termination program will define. The main
considerations are server resources and recovery.

v Resources -- The initialization/termination program can obtain and release
resources such as storage and data sets for its servers. If servers share
resources, you can increase their efficiency by having a single
initialization/termination program define the servers and obtain and release
the resources for them.

v Recovery -- If a server fails and cannot recover, MVSSERV calls the server’s
initialization/termination program to terminate all the servers it defined.
Therefore, you might want to define related servers in the same
initialization/termination program, and define unrelated servers in different
initialization/termination programs.

2. Decide how to package the initialization/termination program in relation to the
servers.

You can package servers and their initialization/termination program as CSECTs
of the same load module or as different load modules. The main consideration
is server loading:

v If you do not want the initialization/termination program to load the server,
place the initialization/termination program and server in the same load
module. The initialization/termination program can use a constant server
address to define the server to MVSSERV.

v If you want the initialization/termination program to load the server, place the
initialization/termination program and server in different load modules. The
initialization/termination program can get the server address from the LOAD
macro to define the server to MVSSERV.

3. Decide whether the initialization/termination program server should use 24- or
31-bit addressing. Initialization/termination programs can execute in AMODE 24
or 31, and RMODE 24 or ANY.

4. Select a name for the initialization/termination program. Names can have up to
eight characters, including the characters A-Z, 0-9, @, #, and $. The first
character cannot be 0-9.

5. Put the name of the initialization/termination program in the input parameter
data set (see “Chapter 5. Installing Programs and Data Sets for Use with
MVSSERV” on page 59).

Writing an Initialization/Termination Program
Figure 10 on page 37 gives an overview of an initialization/termination program’s
processing.

Program Design

36 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Initialization
When MVSSERV receives control, it invokes the server initialization/termination
programs in separate subtasks. MVSSERV gets the names of the
initialization/termination programs from the input parameter data set described in
“Chapter 5. Installing Programs and Data Sets for Use with MVSSERV” on page 59.

Input to the Initialization/Termination Program
Figure 11 and Table 4 show the input that MVSSERV makes available to the
initialization/termination programs.

When MVSSERV gets control, it invokes your server initialization/termination
programs in problem program state, key 8.

As shown in Figure 11, register 1 points to a two-word area. The first word contains
the address of the INITTERM control block; the second word contains the address
of the CED (connectivity environment descriptor). Of the two:

v INITTERM indicates whether the call is for initialization or termination.

v The CED is for MVSSERV use only. (If the program issues the DEFSERV,
SENDREQ, or CHSTRACE macros, it must pass the CED address.)

You can use the INITTERM mapping macro to obtain input from the INITTERM

control block. For details, see “INITTERM Macro” on page 70. Table 4 shows the
INITTERM control block with the initialization input.

MVSSERV

Access initialization input.
Load servers, if necessary.
Obtain resources for servers.
Define servers and server parameters
(resources) to MVSSERV.

Return.
.

Access termination input.
Check last server reply (optional).
Free server resources.
Delete loaded servers.
Return

Initialization/Termination Program

See registers passed

at initialization.See registers passed

Return code
from MVSSERV

Initialization
input

Termination
input at termination.

Figure 10. Overview of an Initialization/Termination Program’s Processing

Register

1

14

15

Return address

Contents

Address of initialization/termination
program Address of INITTERM

Address of CED

0

4

Hex

Address of input

Figure 11. Registers Passed at Initialization

Initialization

Chapter 3. Designing and Writing a Server Initialization/Termination Program 37

Table 4. INITTERM Control Block with Initialization Input
Offset

Dec(Hex)
Number of

Bytes
Field Name Contents

0(0) 4 INTINIT�1� Initialization or termination indicator.
X'00000000' indicates the call is for
initialization. X'00000001' indicates
termination.

4(4) 4 INTWALEN�2� Work area length. Specify the length of a
work area that the program can use at
termination time.

8(8) 4 INTWAPTR�2� Work area address. Specify the address
of a work area that the program can use
at termination time.

12(C) 16 Reserved
28(1C) 4 INTENVRN Address of the TSO/E CPPL (command

processor parameter list). The CPPL is for
system use only; its address must be in
register 1 if a server or
initialization/termination program invokes
a TSO/E command processor or uses
TSO/E services such as SCAN or
PARSE. For more information about the
CPPL, see z/OS TSO/E Programming
Guide.

32(20) 4 Reserved

Notes:

�1� Check for initialization or termination indicator.

�2� Specify a work area (optional).

Loading the Servers
If the servers are not in the same load module as their initialization/termination
program, the initialization/termination program must load the servers.

The following assembler language example shows how an initialization/termination
program can load a server that is not in the same load module.
LOAD EP=server name Load the server
LR 5,0 Get server address from LOAD macro

for use in the DEFSERV macro...

Obtaining Resources
An initialization/termination program can obtain any resources that its servers
require or share. For example, the initialization/termination program can:

v Open data sets that the servers need.

v Obtain storage, such as a work area to be shared among the servers, by issuing
the GETMAIN macro.

The initialization/termination program makes resources available to the server by
pointing to them in a server parameter list (parmlist) as part of the server definition
process. When MVSSERV passes a service request to the server, it passes the
server parmlist list as well.

Initialization

38 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Defining a Server
The initialization/termination program must define its servers to MVSSERV. The
definition must include the names and addresses of the servers and the addresses
of any parameter lists to be passed to the servers along with service requests.
MVSSERV makes a table of the names and addresses; the MVSSERV router
obtains the addresses of requested servers from the table.

You can define servers using the DEFSERV macro. The DEFSERV macro fills in
fields of a connectivity programming request block (CPRB) that does the following:
v Defines the server to MVSSERV.
v Specifies a parmlist for the server.

For details about the DEFSERV macro, see “DEFSERV Macro” on page 71.

Results of the DEFSERV Macro
The DEFSERV macro fills in fields of a CPRB that MVSSERV uses to identify the
server name with the server’s address and parmlist. The CPRB and its significant
fields are shown in Table 5.

The DEFSERV Request CPRB
Table 5. CPRB Control Block Used to Define a Server

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents

0(0) 1 CRBF1 The control block’s version number (first
four bits) and modification level number
(last four bits).

1(1) 2 Reserved
3(3) 1 CRBF4 The type of request (X'03' indicates a

Define Server request).
4(4) 4 CRBCPRB The value of C‘CPRB’.
8(8) 8 Reserved

16(10) 8 CRBSNAME The server name specified in the
DEFSERV parameter SERVNAME.

24(18) 32 Reserved
56(38) 4 CRBRQPLN The value X'0003', indicating the length of

the define server parameter area.
60(3C) 4 CRBRQPRM The address of the define server

parameter area.
64(40) 48 Reserved

Note: All fields shown are set by the DEFSERV macro.

The Define Server Parameter Area
The field CRBRQPRM of the DEFSERV CPRB points to the define server
parameter area. This area, created by the DEFSERV MACRO, points to the
following:
v The server entry point.
v The server parmlist - resources passed to the server when it is called.

Figure 12 shows the format of the define server parameter area.

Initialization

Chapter 3. Designing and Writing a Server Initialization/Termination Program 39

Sending a Service Request
An initialization/termination program can send service requests to servers that it
defines. For example, at termination an initialization/termination program can check
the status of the last reply (see Table 6 on page 41) sent to the PC. If the last reply
had an unsuccessful return code caused by a communication failure, the
initialization/termination program could send a request to the server that issued the
reply, directing the server to cancel its last service.

To send a service request to a server, use the CHSDCPRB macro to create a
CPRB and the SENDREQ macro to initialize and send the CPRB. For details, see
“SENDREQ Macro” on page 73. The SENDREQ macro sends a service request to
another server in a CPRB identical to the one shown in Table 1 on page 9.

Receiving a Service Reply
On return from the SENDREQ macro, an updated CPRB and reply buffers are
returned, indicating the status of the requested service. Table 3 on page 11 shows
the CPRB on return from issuing a service request.

Issuing Messages
Initialization/termination programs can issue messages to the terminal, to the
MVSSERV trace data set, or to both. To issue a message and specify its
destination, use the CHSTRACE macro. For details, see “CHSTRACE Macro” on
page 76. For information about the MVSSERV trace data set, see “Trace Data Set”
on page 61.

Recovery
Like the server, the initialization/termination program can have its own recovery
routine. If the initialization/termination program fails and does not recover,
MVSSERV traps the error and prevents all the servers in the subtask from
processing any more requests.

If the initialization/termination program provides recovery, it must use the ESTAE 0
option to delete its recovery environment before returning control to MVSSERV after
initialization and after termination.

For more information about using the ESTAE macro and recovery routines, refer to
z/OS MVS Programming: Authorized Assembler Services Reference ENF-IXG.

Ending Initialization
When the initialization/termination program is finished with initialization, it must
return control to MVSSERV with a return code of 0 (successful) or 4 (unsuccessful)

Address of server
entry point

Reserved

Hex

0

4

8

C

Address of server
parmlist

Figure 12. The Define Server Parameter Area

Initialization

40 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

in register 15. If the return code is 4, MVSSERV marks all the servers in the
subtask as unavailable, preventing them from processing requests, and immediately
invokes the initialization/termination program for termination.

Termination
Before MVSSERV ends, it calls the initialization/termination program again to delete
the servers (if loaded) and free any resources obtained for them. The termination
input to the initialization/termination program is shown in Figure 13 and Table 6, with
the significant fields indicated.

Table 6. INITTERM Control Block with Termination Input
Offset

Dec(Hex)
Number of

Bytes
Field Name Contents

0(0) 4 INTINIT�1� Initialization or termination indicator.
X'00000001' indicates that the call is for
termination.

4(4) 4 INTWALEN Work area length. The length of a work
area, if any, specified at initialization.

8(8) 4 INTWAPTR Work area address. The address of a
work area, if any, specified at initialization.

12(C) 8 INTSNAME�2� Name of last server to send a reply. If the
initialization/termination program defined
this server and the last reply was not
received successfully (see INTRSN), the
initialization/termination program may take
appropriate action; for example, cancelling
the last service performed.

20(14) 4 INTRSN�3� Return code for last reply. Contains one
of the following return codes:

0(0) Processing was successful.

4(4) The last reply may not have
been successfully received by
the requester.

8(8) The last reply was not
successfully received by the
requester.

10(A) The last reply CPRB from the
server was not valid.

24(18) 4 Reserved
28(1C) 4 INTENVRN CPPL address (see Table 4 on page 38)
32(20) 4 Reserved

Notes:

Register

1

14

15

Contents

Return address

Address of initialization/termination program

Address of INITTERM

Address of CED

0

4

Hex
Address of input

Figure 13. Registers Passed at Termination

Initialization

Chapter 3. Designing and Writing a Server Initialization/Termination Program 41

�1� Check for initialization or termination.

�2� Check the name of the last server to send a reply (optional).

�3� If the last server was defined by the initialization/termination program, check
the status of the last reply (optional). If the last reply had an unsuccessful
return code, the initialization/termination program could send a request to
the server that issued the reply, directing the server to cancel its last
service.

Freeing Resources
The initialization/termination program must release any resources that it obtained.
For example, the program must:

v Use the FREEMAIN macro to free any storage that it obtained by GETMAIN
during initialization.

v Close any data sets that it opened.

Deleting the Servers
The initialization/termination program must delete any servers that it loaded. The
following assembler language example shows how to delete a server.
DELETE EP=server name Delete the server...

When finished, the initialization/termination program must return control to
MVSSERV with a return code of 0 (successful) or 4 (unsuccessful) in register 15.

Compiling or Assembling an Initialization/Termination Program
After writing an initialization/termination program, you must compile or assemble it
and link-edit it. For information about preparing and running a program in TSO/E,
see z/OS TSO/E Programming Guide.

Sample Initialization/Termination Program
The initialization/termination program in Figure 14 corresponds to the sample server
in Figure 6 on page 14. The initialization/termination program does the following:
v Loads the server.
v Issues the DEFSERV macro.
v Cleans up at termination.

Termination

42 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Sample Initialization/Termination Program

**
IBMINTRM CSECT
IBMINTRM AMODE 24
IBMINTRM RMODE 24

STM 14,12,12(13) Save the caller's registers.
LR 12,15 Establish addressability within
USING IBMINTRM,12 this CSECT.
LA 0,DYNSIZE Obtain the dynamic storage size.
GETMAIN RU,LV=(0) Obtain the dynamic storage.
LR 11,1 Place the storage address in the

* dynamic area register.
USING DYNAREA,11 Establish addressability to the

* dynamic area.
ST 13,SAVEAREA+4 Save the callers savearea address.
ST 11,8(,13) Chain our savearea to the callers.
LM 15,1,16(13) Restore registers 15,0, and 1.
LA 13,SAVEAREA Point register 13 to our savearea.
EJECT

**
* TITLE: IBMINTRM MAINLINE
*
* LOGIC: Perform server initialization/termination.
*
* OPERATION:
* 1. Determine if we are in initialization or termination.
* 2. If initialization:
* - Call INIT_SERVER to load and define the servers to MVSSERV
* - If the servers are defined to MVSSERV:
* A. Exit the init/term program.
* - Else:
* A. Call CLEAN_UP to delete the servers.
* B. Exit the init/term program.
* 3. Else, termination:
* - Call CLEAN_UP to delete the servers.
* 4. Return to caller with return code.
**

SPACE
L 2,0(,1) Load the init/term area address.
USING INITTERM,2 Establish addressability to it.
SPACE
L 3,4(,1) Load the CED address.
USING CHSCED,3 Establish addressability to it.
SPACE

**
* Determine if we are in INITIALIZATION or TERMINATION
**

SPACE
LA 4,INITIAL Obtain the initialization equate.
C 4,INTINIT Are we in initialization?
BNE TERMINATE No, then we must terminate.
SPACE

**
* Perform INITIALIZATION processing
**

SPACE
BAL 14,INIT_SERVERS Yes, Call INIT_SERVERS.
LTR 15,15 Are the servers defined to MVSSERV?
BZ EXIT Leave the init/term program.
SPACE

Figure 14. Sample Initialization/Termination Program (Part 1 of 9)

Sample Initialization/Termination Program

Chapter 3. Designing and Writing a Server Initialization/Termination Program 43

**
* Perform TERMINATION processing
**

SPACE
TERMINATE DS 0H

BAL 14,CLEAN_UP Call CLEAN_UP.
EJECT

**
* Leave the INIT/TERM program
**

SPACE
EXIT DS 0H

L 13,SAVEAREA+4 Restore the callers savearea
* address.

LR 2,15 Save the return code.
LR 1,11 Obtain dynamic area address.
LA 0,DYNSIZE Obtain the dynamic storage size.
FREEMAIN RU,LV=(0),A=(1) Release the dynamic area.
LR 15,2 Restore the return code.
L 14,12(,13) Restore the caller's registers
LM 0,12,20(13) except for 15 (return code).
BR 14 Return to caller with return code.
EJECT

**
* TITLE: INIT_SERVERS
*
* LOGIC: Define the servers to MVSSERV.
*
* OPERATION:
* 1. Issue the CHSTRACE macro to output a message to the TRACE data
* set.
* 2. Issue the GETMAIN macro to obtain the SERVER parameter storage.
* 3. Clear the SERVER parameter storage and initialize the macro
* list forms.
* 4. Load the servers.
* 5. Issue the DEFSERV macro for each server to attempt to define
* the server to MVSSERV.
* 6. Save the return codes.
* 7. Return to the mainline.
**

SPACE
INIT_SERVERS DS 0H

STM 14,12,SUBSAVE Save the caller's registers.
SPACE 2

Figure 14. Sample Initialization/Termination Program (Part 2 of 9)

Sample Initialization/Termination Program

44 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

**
* Issue the CHSTRACE macro to output the initialization message.
**

SPACE
CHSTRACE DEST=TRACE,CED=CHSCED,BUFFER=INIT_MSG, *

BUFLEN=MSG_LEN,MF=(E,CHSLIST,COMPLETE)
SPACE

**
* Obtain the Server Parameter Area.
**

SPACE
LA 0,SERVER_PARMS_SIZE Obtain the length of the server

* parameter area.
GETMAIN RU,LV=(0)
LR 4,1 Obtain the address of the storage.
USING SERVPARM,4 Establish addressability to the

* server parameters.
ST 0,INTWALEN Save the server parameter area

* length.
ST 4,INTWAPTR Save the server parameter area

* address.
SPACE

Figure 14. Sample Initialization/Termination Program (Part 3 of 9)

Sample Initialization/Termination Program

Chapter 3. Designing and Writing a Server Initialization/Termination Program 45

**
* Initialize the macro list forms.
**

SPACE
LA 5,L'SERVER_STORAGE
SLR 6,6
SLR 7,7
MVCL 4,6
L 4,INTWAPTR Restore server parameter area

* address.
MVC DCBIN(SDCBIN_LEN),SDCBIN
MVC DCBOUT(SDCBOUT_LEN),SDCBOUT
MVC DCBLOG(SDCBLOG_LEN),SDCBLOG
MVC OPEN_LIST(SOPEN_LEN),SOPEN_LIST
MVC CLOSE_LIST(SCLOSE_LEN),SCLOSE_LIST
SPACE

**
* Issue the LOAD macro to load the servers into storage.
**

SPACE
LOAD EP=IBMABASE
ST 0,SERVER_ADDR Save IBMABASE's address.
SPACE
LOAD EP=IBMABAS1
ST 0,SERVER1_ADDR Save IBMABAS1's address.
SPACE
LOAD EP=IBMABAS2
ST 0,SERVER2_ADDR Save IBMABAS2's address.
SPACE

**
* Initialize the SERVER parameter list.
**

SPACE
LA 5,CHSDCPRB Get the address of the CPRB.
SPACE
LA 6,SERVER_STORAGE Get the Server dynamic storage

* address.
ST 6,PARM_LIST Place it in the server parameter.
LA 6,DCBIN Get the INPUT DCB address.
ST 6,PARM_LIST+4 Place it in the server parameter.
LA 6,DCBOUT Get the OUTPUT DCB address.
ST 6,PARM_LIST+8 Place it in the server parameter.
LA 6,DCBLOG Get the LOG DCB address.
ST 6,PARM_LIST+12 Place it in the server parameter.
LA 6,OPEN_LIST Get the OPEN macro list form.
ST 6,PARM_LIST+16 Place it in the server parameter.
LA 6,CLOSE_LIST Get the CLOSE macro list form.
ST 6,PARM_LIST+20 Place it in the server parameter.
SPACE
LA 6,PARM_LIST Get the address of the server

* parameter list.
SPACE

Figure 14. Sample Initialization/Termination Program (Part 4 of 9)

Sample Initialization/Termination Program

46 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

**
* Issue the DEFSERV macro to define the servers to MVSSERV.
**

SPACE
DEFSERV CPRB=(5),CED=(3),SERVNAME=SERVER_NAME, *

SERVEPA=SERVER_ADDR,SERVPARM=(6),MF=(E,DEFLIST)
LTR 15,15 Check the return code.
BNZ DEFSERV_ERROR If it is non-zero, then leave.
L 15,CRBCRTNC Obtain the return code.
LTR 15,15 Check the return code.
BNZ DEFSERV_ERROR If it is non-zero, then leave.
SPACE
DEFSERV CPRB=(5),CED=(3),SERVNAME=SERVER1_NAME, *

SERVEPA=SERVER1_ADDR,SERVPARM=(6),MF=(E,DEFLIST)
LTR 15,15 Check the return code.
BNZ DEFSERV_ERROR If it is non-zero, then leave.
L 15,CRBCRTNC Obtain the return code.
LTR 15,15 Check the return code.
BNZ DEFSERV_ERROR If it is non-zero, then leave.
SPACE
DEFSERV CPRB=(5),CED=(3),SERVNAME=SERVER2_NAME, *

SERVEPA=SERVER2_ADDR,SERVPARM=(6),MF=(E,DEFLIST)
LTR 15,15 Check the return code.
BNZ DEFSERV_ERROR If it is non-zero, then leave.
L 15,CRBCRTNC Obtain the return code.
LTR 15,15 Check the return code.
BNZ DEFSERV_ERROR If it is non-zero, then leave.
B LEAVE Everything is O.K., so leave.
SPACE

DEFSERV_ERROR DS 0H
LA 15,4 Set a bad return code.
SPACE

LEAVE DS 0H
L 14,SUBSAVE Restore the caller's registers
LM 0,12,SUBSAVE+8 except for 15 (return code).
BR 14 Return to caller with return code.
EJECT

**
* TITLE: CLEAN_UP
*
* LOGIC: Remove the servers.
*
* OPERATION:
* 1. Issue the CHSTRACE macro to output a message to the TRACE data
* set.
* 2. Issue the FREEMAIN macro to release the SERVER parameter storage.
* 3. Delete the servers.
* 4. Return to the mainline.
**

SPACE
CLEAN_UP DS 0H

STM 14,12,SUBSAVE Save the caller's registers.
SPACE 2

**
* Issue the CHSTRACE macro to output the termination message.
**

SPACE
CHSTRACE DEST=TRACE,CED=CHSCED,BUFFER=TERM_MSG, *

BUFLEN=MSG_LEN,MF=(E,CHSLIST,COMPLETE)
SPACE

Figure 14. Sample Initialization/Termination Program (Part 5 of 9)

Sample Initialization/Termination Program

Chapter 3. Designing and Writing a Server Initialization/Termination Program 47

**
* Release the Server Parameter Area.
**

SPACE
L 1,INTWAPTR Obtain the address of the server

* parameter area.
L 0,INTWALEN Obtain the length of the server

* parameter area.
FREEMAIN RU,LV=(0),A=(1)
SPACE

**
* Issue the DELETE macro to delete the servers from storage.
**

SPACE
DELETE EP=IBMABASE
SPACE
DELETE EP=IBMABAS1
SPACE
DELETE EP=IBMABAS2
SPACE
LA 15,0
L 14,SUBSAVE Restore the caller's registers
LM 0,12,SUBSAVE+8 except for 15 (return code).
BR 14 Return to caller with return code.
EJECT

**
* Constants.
**

SPACE
**
* SERVER names.
**

SPACE
SERVER_NAME DC CL8'IBMABASE' Server name.
SERVER1_NAME DC CL8'IBMABAS1' Server name.
SERVER2_NAME DC CL8'IBMABAS2' Server name.

SPACE
**
* TRACE data set messages.
**

SPACE
INIT_MSG DC CL80' Initialization/termination program IBMINTRM entered*

for INITIALIZATION.'
TERM_MSG DC CL80' Initialization/termination program IBMINTRM entered*

for TERMINATION.'
MSG_LEN DC A(*-TERM_MSG) Length of message

SPACE
**
* OPEN macro (static list form).
**

SPACE
SOPEN_LIST OPEN (,(INPUT),,(OUTPUT),,(EXTEND)),MF=L
SOPEN_LEN EQU *-SOPEN_LIST

SPACE
**
* CLOSE macro (static list form).
**

SPACE
SCLOSE_LIST CLOSE (,,,,,),MF=L
SCLOSE_LEN EQU *-SCLOSE_LIST

EJECT

Figure 14. Sample Initialization/Termination Program (Part 6 of 9)

Sample Initialization/Termination Program

48 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Sample Initialization/Termination Program

Chapter 3. Designing and Writing a Server Initialization/Termination Program 49

**
* DCB macro (static input).
**

SPACE
SDCBIN DCB DDNAME=CUSTRECS,DSORG=PS,MACRF=GM
SDCBIN_LEN EQU *-SDCBIN

EJECT
**
* DCB macro (static output).
**

SPACE
SDCBOUT DCB DDNAME=ACCTRECS,DSORG=PS,MACRF=PM
SDCBOUT_LEN EQU *-SDCBOUT

EJECT
**
* DCB macro (static log).
**

SPACE
SDCBLOG DCB DDNAME=LOGTRANS,DSORG=PS,MACRF=PM
SDCBLOG_LEN EQU *-SDCBLOG

EJECT
**
* Dynamic Area.
**

SPACE
DYNAREA DSECT

SPACE
SAVEAREA DS 18F IBMINTRM's save area.
SUBSAVE DS 15F IBMINTRM subroutine's save area.
SERVER_ADDR DS F Used to hold the servers entry
* point.
SERVER1_ADDR DS F Used to hold the servers entry
* point.
SERVER2_ADDR DS F Used to hold the servers entry
* point.

SPACE
**
* Issue the DEFSERV macro list form to supply a parameter list.
**

SPACE
DEFLIST DEFSERV MF=L

SPACE
**
* Issue the CHSTRACE macro list form to supply a parameter list.
**

SPACE
CHSTRACE MF=(L,CHSLIST)
EJECT

**
* CPRB
**

SPACE
CHSDCPRB DSECT=NO
SPACE

DYNSIZE EQU *-DYNAREA Size of the dynamic area.
EJECT

**
* Server parameters.
**

SPACE
SERVPARM DSECT

SPACE

Figure 14. Sample Initialization/Termination Program (Part 7 of 9)

Sample Initialization/Termination Program

50 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

**
* Dynamic storage for server (saves GETMAIN and FREEMAIN in server)
*
* NOTE: SERVER_STORAGE must be changed if the DYNAMIC area for
* IBMABASE, IBMABAS1 and IBMABAS2 exceeds the current size.
**

SPACE
SERVER_STORAGE DS CL500

SPACE
**
* OPEN macro (dynamic list form).
**

SPACE
OPEN_LIST OPEN (,(INPUT),,(OUTPUT),,(OUTPUT)),MF=L

SPACE
**
* CLOSE macro (dynamic list form).
**

SPACE
CLOSE_LIST CLOSE (,,,,,),MF=L

EJECT
**
* DCB macro (dynamic input).
**

SPACE
DCBIN DCB DDNAME=CUSTRECS,DSORG=PS,MACRF=GM

EJECT
**
* DCB macro (dynamic output).
**

SPACE
DCBOUT DCB DDNAME=ACCTRECS,DSORG=PS,MACRF=PM

EJECT
**
* DCB macro (dynamic log).
**

SPACE
DCBLOG DCB DDNAME=LOGTRANS,DSORG=PS,MACRF=PM

EJECT
SPACE

**
* Server parameter list, contains the addresses of:
* The Server Dynamic Storage
* The INPUT DCB
* The OUTPUT DCB
* The LOG DCB
* The OPEN LIST FORM
* The CLOSE LIST FORM
**

SPACE
PARM_LIST DS 6A

SPACE
SERVER_PARMS_SIZE EQU *-SERVPARM Size of server parameter area.

EJECT

Figure 14. Sample Initialization/Termination Program (Part 8 of 9)

Sample Initialization/Termination Program

Chapter 3. Designing and Writing a Server Initialization/Termination Program 51

**
* CED mapping.
**

SPACE
CHSCED DSECT=YES
EJECT

**
* INIT/TERM mapping.
**

SPACE
INITTERM DSECT=YES
END IBMINTRM

Figure 14. Sample Initialization/Termination Program (Part 9 of 9)

Sample Initialization/Termination Program

52 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Chapter 4. Writing an Access Method Driver

What is an Access Method Driver? 53
Using the AMD Interface . 54
Writing an Access Method Driver 54

Considerations for Writing Access Method Drivers 55
Sending a Service Request 55
Receiving a Service Reply. 55
Issuing Messages . 56

Sample Access Method Driver 57

This chapter describes the role of MVSSERV access method drivers and
MVSSERV’s access method driver interface.

What is an Access Method Driver?
Access method drivers (AMDs) are programs that provide the communications link
between MVSSERV and a PC. Access method drivers on the host and PC work in
pairs, passing data between them in a format appropriate to the mode of
PC-to-Host attachment. At the host, MVSSERV’s access method driver converts
requests into CPRBs, sends them to servers, and converts reply CPRBs back into
the proper communications format for transmission to the PC.

MVSSERV provides access method drivers that manage communications with PCs
attached to the host through an IBM 3174 or 3274 control unit in:
v Distributed Function Terminal (DFT) mode
v Control Unit Terminal (CUT) mode

MVSSERV also provides an AMD interface that lets you write and install other
access method drivers to support other modes of attachment. Figure 15 shows the
position of the AMD interface in the MVSSERV environment.

© Copyright IBM Corp. 1988, 2001 53

Using the AMD Interface
The purpose of the AMD interface is to let installations write and install access
method drivers to support different modes of PC-to-host attachment. If an access
method driver is properly installed on MVS and defined to MVSSERV, MVSSERV
invokes the access method driver. Then MVSSERV routes service requests from
the access method driver to the servers, and routes service replies back to the
access method driver. An access method driver on the host must have a
counterpart on the PC; the access method drivers are responsible for ensuring that
requests from the PC reach MVSSERV in the proper format, and that replies from
MVSSERV reach the PC properly.

Writing an Access Method Driver
You can write access method drivers to support different modes of PC-to-host
attachment. An access method driver must do the following:
v Receive requests from the PC
v Use the SENDREQ macro to send the requests to servers
v Receive the server replies
v Send the replies to the requester in the appropriate form.
v At termination, free any resources and notify the PC counterpart.

Installing and Defining an Access Method Driver
To make an access method driver available to MVSSERV, you must install the
access method driver on MVS and define it in MVSSERV’s input parameter data
set. See Chapter 5. Installing Programs and Data Sets for Use with MVSSERV for
information about installing access method drivers and defining them in the
MVSSERV input parameter data set.

ROUTER SERVER

MVS Subtask

.

.

.

.

.

.

.

.

.

.

.

.

REQU TES

REPLY

REQU TES

REPLY

HOST SYSTEM with MVS/XA

REQU TES

REPLY

ACCESS

METHOD

DRIVER

Figure 15. The MVSSERV Enhanced Connectivity Environment

What is an Access Method Driver?

54 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

AMD Invocation
When MVSSERV finds an access method driver defined in the input parameter data
set, MVSSERV loads and invokes it. MVSSERV passes a single parameter to the
access method driver: the address of a Connectivity Environment Descriptor (CED),
as shown in Figure 16.

The CED address is for MVSSERV use only; to issue the SENDREQ or
CHSTRACE macros, the access method driver must pass the CED address in the
macro.

Considerations for Writing Access Method Drivers
Installation-written access method drivers must:

v Run AMODE 31 and RMODE ANY.

v Provide their own recovery routines.

v Display their own screens or logos. MVSSERV does not display its logo when a
user-defined access method driver is running.

In addition, access method drivers may not issue the DEFSERV macro to define
servers. In order for MVSSERV to route requests to servers, the servers must be
defined to MVSSERV by initialization/termination programs or by other servers.

Sending a Service Request
The primary function of an access method driver is to receive service requests,
send the service requests to servers, receive service replies from the servers, and
send the service replies back to the requester. Service requests must be sent to
servers in a CPRB control block.

To send a service request, you can use the CHSDCPRB macro to create a CPRB
and the SENDREQ macro to initialize the CPRB with the request and send it to the
server. For details, see “SENDREQ Macro” on page 73. The SENDREQ macro
sends the service request in a CPRB as shown in Table 1 on page 9.

Receiving a Service Reply
On return from a service request, an updated CPRB and reply buffers are returned,
indicating the results of the requested service. (Table 3 on page 11 shows the
CPRB on return from a service request.) The access method driver on the host
must convert the reply information into the appropriate format and send the
information to its PC counterpart. The PC counterpart must convert the information
back into a CPRB and send it to the requester. For complete information about the
format of the CPRB that the requester expects, see the IBM Programmer’s Guide to
the Server-Requester Programming Interface for the IBM Personal Computer and
the IBM 3270 PC.

Register

1

Contents

Address of CED

0

4

Hex

Address of input

Figure 16. MVSSERV Input to an Access Method Driver

What is an Access Method Driver?

Chapter 4. Writing an Access Method Driver 55

Issuing Messages
An access method driver can issue messages to the terminal, to the MVSSERV
trace data set, or to both. To issue a message and specify its destination, use the
CHSTRACE macro. For details, see “CHSTRACE Macro” on page 76. For
information about the MVSSERV trace data set, see “Trace Data Set” on page 61.

Considerations for Writing Access Method Drivers

56 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Sample Access Method Driver
The following sample is provided to illustrate use of the AMD interface. The sample
does not represent a functional access method driver.

IBMAMD CSECT
IBMAMD AMODE 31
IBMAMD RMODE ANY

STM 14,12,12(13) Save the caller's registers.
LR 12,15 Establish addressability within
USING IBMAMD,12 this CSECT.
LA 0,DYNSIZE Obtain the dynamic storage size.
GETMAIN RU,LV=(0) Obtain the dynamic storage.
LR 11,1 Place the storage address in the

* dynamic area register.
USING DYNAREA,11 Establish addressability to the

* dynamic area.
ST 13,SAVEAREA+4 Save the caller's savearea address.
ST 11,8(,13) Chain our savearea to the callers.
LM 15,1,16(13) Restore registers 15,0, and 1.
LA 13,SAVEAREA Point register 13 to our savearea.
L 2,0(,1) Obtain the CED address.
USING CHSCED,2 Establish addressability to it.
EJECT

* TITLE: IBMAMD MAINLINE
*
* LOGIC: Receive the PC request and route it to the appropriate
* server.

SPACE 2
*
* An Access Method Driver receives and sends communications and is
* responsible for initiating service requests on the host.
*
* The format of the communication depends on the protocol
* that is used to communicate between the requester and the host
* AMD.
*
* The AMD can use the CHSTRACE macro to issue messages to the
* terminal and/or the trace data set. Messages can indicate
* that a communication was received and the type of communication
* (such as a valid server request, invalid server request, termination
* request, and so on).
*
* If a valid request for a server was received and all of the
* parameters were received, the AMD can issue the SENDREQ macro to
* invoke the server.
*
* Upon return from the SENDREQ macro, the AMD should send the reply
* to the requester.
*
* The AMD should then await another request or reply communication
* until a predetermined termination indicator is received. When the
* AMD terminates, it returns control to MVSSERV.

EJECT

Figure 17. Sample Access Method Driver (Part 1 of 2)

Sample Access Method Driver

Chapter 4. Writing an Access Method Driver 57

**
* Leave the AMD.
**

SPACE
EXIT DS 0H

L 13,SAVEAREA+4 Restore the caller's savearea
* address.

LR 2,15 Save the return code.
LR 1,11 Obtain dynamic area address.
LA 0,DYNSIZE Obtain the dynamic storage size.
FREEMAIN RU,LV=(0),A=(1) Release the dynamic area.
LR 15,2 Restore the return code.
L 14,12(,13) Restore the caller's registers
LM 0,12,20(13) except for 15 (return code).
BR 14 Return to caller with return code.
EJECT

**
* Dynamic Area.
**

SPACE
DYNAREA DSECT DYNAMIC area common mapping

SPACE
SAVEAREA DS 18F Save area.

SPACE
**
* Issue the CHSTRACE macro list form to supply a parameter list.
**

SPACE
CHSTRACE MF=(L,CHSLIST)
SPACE

**
* Issue the SENDREQ macro list form to supply a parameter list.
**

SPACE
SENDREQ MF=(L,SENDLIST)
EJECT

* CPRB

SPACE
CHSDCPRB DSECT=NO

DYNSIZE EQU *-DYNAREA
EJECT

**
* CED mapping.
**

SPACE
CHSCED DSECT=YES
END IBMAMD

Figure 17. Sample Access Method Driver (Part 2 of 2)

Sample Access Method Driver

58 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Chapter 5. Installing Programs and Data Sets for Use with
MVSSERV

Installing a Program . 59
In a STEPLIB . 59
In a System Library . 59

Using the Input Parameter Data Set 60
Allocating the Input Parameter Data Set 60
Initializing the Input Parameter Data Set 60

Additional MVSSERV Data Sets 61
Trace Data Set . 61
Dump Data Set . 61
Dump Suppression Data Set 62

This chapter describes how to install servers, initialization/termination programs,
and access method drivers for use with MVSSERV. This chapter uses the term
program to collectively refer to the above programs.

After a program has been written, compiled or assembled, and link-edited, you must
install the program to make it available to users and to MVSSERV.

Installation is a two-step process. The steps are:

1. Install the program in a library.

2. Use the input parameter data set to identify initialization/termination programs
and access method drivers.

Installing a Program
You can install a program in one of two ways:
v In a STEPLIB
v In a system library.

In a STEPLIB
You can install a program in a STEPLIB that is allocated in a user’s logon
procedure. This method of installation lets you restrict the program to specific users,
and is recommended when testing a new program.

To allocate a STEPLIB to a user, add the following JCL in the user’s logon
procedure:
//STEPLIB DD DSN=data_set_name,DISP=SHR

In a System Library
To make a program available to all system users, copy it to a member of a system
library. The system library can be one that is defined in the linklist concatenation,
such as SYS1.LINKLIB, or it can be SYS1.LPALIB, which is allocated at IPL and
therefore always available.

Programs in system libraries should be (and programs in SYS1.LPALIB must be)
reentrant--that is, they must use dynamic storage to allow multiple and concurrent
executions of the program. The sample programs in this book are reentrant, and
macro descriptions in “Chapter 7. Macro Syntax and Parameters” on page 69
indicate steps to take to make a program reentrant.

© Copyright IBM Corp. 1988, 2001 59

Using the Input Parameter Data Set
Before issuing the MVSSERV command, you must name, in the input parameter
data set, your initialization/termination programs and optionally, any access method
driver. From this input, MVSSERV invokes the access method driver, if any, to
manage communications, and the initialization/termination programs, which define
the servers to MVSSERV.

Allocating the Input Parameter Data Set
The input parameter data set must have the following characteristics:
v ddname -- CHSPARM
v logical record length -- 80
v format -- fixed or fixed block

You can create the input parameter data set with the following command:
ALLOCATE FILE(CHSPARM) DA('data_set_name') NEW LRECL(80) RECFM(F)

To make the input parameter data set available to an MVSSERV user, allocate the
existing data set in the user’s logon procedure, or in a CLIST, REXX exec, or ISPF
dialog that issues MVSSERV for the user.

v In a logon procedure, you can use the following JCL:
//CHSPARM DD DSN=data_set_name,DISP=SHR

v In a CLIST, REXX exec, or ISPF dialog, you can use the following command:
ALLOCATE FILE(CHSPARM) DA('data_set_name') SHR

Be sure that the user has security authorization to access the input parameter data
set.

Initializing the Input Parameter Data Set
Each record of the input parameter data set must contain the name of an
initialization/termination program or an access method driver, starting in column 1.
The name can have up to eight characters, including the characters A-Z, 0-9, @, #,
and $. The first character cannot be 0-9.

To distinguish access method drivers from initialization/termination programs,
include the TYPE keyword in the input record anywhere between columns 9 and
72. An access method driver must be followed by the keyword TYPE(A);
initialization/termination programs can be followed by the keyword TYPE(I) or by no
keyword.

For example, in the following lines from an input parameter data set, the first two
programs are initialization/termination programs and the third (AMDPROG) is an
access method driver.
----+----1----+----2----+----3----+----4----+----5---

INTPROG1
INTPROG2 TYPE(I)
AMDPROG TYPE(A)

MVSSERV invokes all initialization/termination programs it finds in the input
parameter data set, but invokes only the first access method driver it finds, ignoring
any other TYPE(A) programs.

Using the Input Parameter Data Set

60 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Additional MVSSERV Data Sets
In addition to the input parameter data set, you can allocate optional data sets to
contain MVSSERV diagnosis information. These diagnostic data sets can also be
allocated in a user’s logon procedure, in a CLIST, REXX exec, or ISPF dialog that
invokes MVSSERV, or in line mode TSO/E. The diagnostic data sets and their
functions are as follows:
v Trace data set -- receives trace data and messages
v Dump data set -- receives system dump data
v Dump suppression data set -- lets you specify abend codes for which you do not

want dumps to be taken

Trace Data Set
You can specify a data set to receive trace data from an MVSSERV session, as
well as messages issued by the CHSTRACE macro. For messages and data to be
received in the trace data set, MVSSERV must be invoked with the TRACE or
IOTRACE option. The level of trace data from MVSSERV varies with the option
used:

v TRACE -- records events in the MVSSERV session, such as requests for
servers, and MVSSERV errors.

v IOTRACE -- records the TRACE information and communications with the PC,
including data transmissions and the contents of the CPRB.

Allocating the Trace Data Set
The trace data set must have the following characteristics:
v ddname -- CHSTRACE
v logical record length -- 80
v format -- fixed or fixed block

You can create the trace data set with the following command:
ALLOCATE FILE(CHSTRACE) DA('data_set_name') NEW LRECL(80) RECFM(F)

To make the trace data set available to an MVSSERV user, allocate the existing
data set in the user’s logon procedure, or in a CLIST, REXX exec, or ISPF dialog
that issues MVSSERV for the user. Users must have their own trace data sets.

v In a logon procedure, you can use the following JCL:
//CHSTRACE DD DSN=data_set_name,DISP=OLD

v In a CLIST, REXX exec, or ISPF dialog, you can use the following command:
ALLOCATE FILE(CHSTRACE) DA('data_set_name') OLD

For more information about the MVSSERV trace parameters and syntax, refer to
“Chapter 6. Testing and Diagnosis” on page 65.

Note: Use of the trace parameters may affect MVSSERV performance. Therefore,
your installation may decide not to use the MVSSERV trace parameters for
regular production work. However, for testing or diagnosing servers, or
requesting diagnosis help from IBM service personnel, use MVSSERV with
the trace data set and the parameter TRACE or IOTRACE.

Dump Data Set
You can allocate a data set to receive dump data from an MVSSERV session. If
you allocate a dump data set, MVSSERV provides a dump at the first occurrence of
an abend.

Additional MVSSERV Data Sets

Chapter 5. Installing Programs and Data Sets for Use with MVSSERV 61

Allocating the Dump Data Set
The dump data set must be associated with one of the following ddnames:

v SYSUDUMP, for a formatted dump of the MVSSERV storage area

v SYSMDUMP, for an unformatted dump of the MVSSERV storage area and the
system nucleus

v SYSABEND, for a formatted dump of the MVSSERV storage area including the
local system queue area and IOS control blocks

The exact contents of a dump depend on the default options specified in your
SYS1.PARMLIB members SYSUDUMP, SYSMDUMP, and SYSABEND. These
system default options can be changed using the CHNGDUMP command. For
further information about the dump data sets and how to read them, refer to z/OS
MVS Diagnosis: Tools and Service Aids.

To make a dump data set available to an MVSSERV user, install the existing data
set in the user’s logon procedure, or in a CLIST, REXX exec, or ISPF dialog that
issues MVSSERV for the user. Each user must have their own dump data set.

v In a logon procedure, you can use the following JCL:
//SYSUDUMP DD DSN=data_set_name,DISP=OLD

v In a CLIST, REXX exec, or ISPF dialog, you can use the following command:
ALLOCATE FILE(SYSUDUMP) DA('data_set_name') OLD

Dump Suppression Data Set
If you use a dump data set, you can eliminate unnecessary dumps by using the
MVSSERV dump suppression data set. The dump suppression data set lets you
specify abend codes for which you do not want to receive dumps from MVSSERV.
For example, you can specify abend code 913 to avoid dumps caused by
unsuccessful OPEN macro requests.

Allocating the Dump Suppression Data Set
The dump suppression data set must have the following characteristics:
v ddname -- CHSABEND
v logical record length -- 80
v format -- fixed or fixed block

You can create the dump suppression data set with the following command:
ALLOCATE FILE(CHSABEND) DA('data_set_name') NEW LRECL(80) RECFM(F)

To make the dump suppression data set available to an MVSSERV user, allocate
the existing data set in the user’s logon procedure, or in a CLIST, REXX exec, or
ISPF dialog that issues MVSSERV for the user.

v In a user’s logon procedure, you can use the following JCL:
//CHSABEND DD DSN=data_set_name,DISP=SHR

v In a CLIST, REXX exec, or ISPF dialog, you can use the following command:
ALLOCATE FILE(CHSABEND) DA('data_set_name') SHR

Initializing the Dump Suppression Data Set
Each 80-byte record of the dump suppression data set must be in the following
format:

OFFSET LENGTH DESCRIPTION

+0 3 EBCDIC ABEND code
in hex. for system ABENDs
in decimal for user ABENDs

Additional MVSSERV Data Sets

62 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

+3 1 Reserved
+4 4 EBCDIC REASON code (hex)
+8 1 Reserved
+9 1 EBCDIC dump action field:

0 = Do not dump
1 = SNAP Dump

+10 70 Reserved

Use leading zeros for abend and reason codes as needed. For example, to
suppress dumps from abends of the OPEN macro (abend code 913) caused by
RACF authorization failure (reason code 38), type the following on a line of the
dump suppression data set:
----+----1----+----2----+----3----+----4----+----5---

913 0038 0

You can replace the first character of the abend code and the entire reason code
with X’s, to signify all values. For example, to suppress dumps from all reason
codes of the OPEN macro, type the following:
----+----1----+----2----+----3----+----4----+----5---

913 XXXX 0

And to suppress dumps for all abend codes ending in 13, type the following:
----+----1----+----2----+----3----+----4----+----5---

X13 XXXX 0

For a list of abend and reason codes, refer to the following:
v z/OS MVS System Codes
v z/OS MVS System Messages, Vol 1 (ABA-AOM)
v z/OS MVS System Messages, Vol 2 (ARC-ASA)
v z/OS MVS System Messages, Vol 3 (ASB-BPX)
v z/OS MVS System Messages, Vol 4 (CBD-DMO)
v z/OS MVS System Messages, Vol 5 (EDG-GFS)
v z/OS MVS System Messages, Vol 6 (GOS-IEA)
v z/OS MVS System Messages, Vol 7 (IEB-IEE)
v z/OS MVS System Messages, Vol 8 (IEF-IGD)
v z/OS MVS System Messages, Vol 9 (IGF-IWM)
v z/OS MVS System Messages, Vol 10 (IXC-IZP)

Additional MVSSERV Data Sets

Chapter 5. Installing Programs and Data Sets for Use with MVSSERV 63

Additional MVSSERV Data Sets

64 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Chapter 6. Testing and Diagnosis

Testing Servers . 65
Steps for Testing Servers . 65

Diagnosing Servers . 66
Reading the Trace Data Set 66

This chapter describes the steps to follow to test servers and diagnose any server
problems.

Testing Servers
After you have written and installed a server, you must test it. You can first test the
server as a member of a STEPLIB. When you are satisfied that the server works
correctly, you can then re-install and test the server again for general use in a
system library.

When testing a server, you must start an MVSSERV session on TSO/E. On the PC,
you must invoke the requester program that requests the server. The requester
must name the server and service function, and pass any data and parameters that
the service function needs.

Steps for Testing Servers
Use the following steps to test a server:

1. Make sure that you have the following data sets available for your MVSSERV
session:

v The server and its initialization/termination program, installed in a STEPLIB
in your logon procedure.

v An input parameter data set, containing the name of the
initialization/termination program.

v A trace data set, to receive MVSSERV messages.

For information about allocating the data sets, refer to “Chapter 5. Installing
Programs and Data Sets for Use with MVSSERV” on page 59. You may also
want to have the dump data set and the dump suppression data set described
in “Chapter 5. Installing Programs and Data Sets for Use with MVSSERV” on
page 59.

2. To start the MVSSERV session, log on to TSO/E and issue the MVSSERV
command.

MVSSERV has the following syntax, with the default underlined:
MVSSERV [NOTRACE]

[TRACE]
[IOTRACE]

For the test, use the TRACE option. TRACE produces messages in the trace
data set about internal MVSSERV events, including server failures.

Note: The method used to refresh the MVSSERV logo depends on your type
of terminal support.

3. Switch to the PC session. (If you are using a PC other than the 3270 PC,
issue the appropriate Enhanced Connectivity Facility command for the PC.)

4. Invoke the requester that corresponds to the server you want to test.

© Copyright IBM Corp. 1988, 2001 65

5. Respond to any messages from the requester. The requester should issue
messages about any non-zero return codes from the server.

6. Verify that the request was satisfied.

7. Switch back to the host session and press the PF3 key to end MVSSERV.

8. Note any messages that appear on your screen. Each message has a
message ID, beginning with CHS. In TSO/E, you can obtain online help for
MVSSERV messages by typing the message ID in the following command:
HELP MVSSERV MSG(CHSxxxxxxx)

9. Read the trace data set. Because you used the TRACE option when invoking
MVSSERV, the trace data set should have recorded informational and error
messages about events in the session and any errors that may have occurred.
The trace data set should also contain any messages that the server issued
with the default, TRACE, or BOTH options of the CHSTRACE macro.

For information about reading the trace data set messages, see “Diagnosing
Servers”.

10. When the server works properly, you may want to copy it to a system library
such as SYS1.LPALIB to make it available to other users. Make sure that the
other users allocate the input parameter data set in their logon procedures, in
a CLIST, REXX exec, or ISPF dialog, or in line mode TSO/E. After you copy
the server to a system library, be sure to retest it.

Diagnosing Servers
This topic describes how to use information in the MVSSERV trace data set to
diagnose and correct server problems.

Reading the Trace Data Set
When MVSSERV is issued with the TRACE or IOTRACE option, the trace data set
contains messages from MVSSERV and any messages issued from servers,
initialization/termination programs, or access method drivers using the CHSTRACE
macro with options TRACE or BOTH.

To see messages about your most recent MVSSERV session, you can edit, browse,
or print the MVSSERV trace data set. For explanations of the messages from
MVSSERV, see z/OS TSO/E Messages.

The message explanations include information about what action, if any, you must
take when you see a message.

The MVSSERV messages are preceded by message IDs beginning with the letters
CHS. The last character of the message ID indicates the type of message: I for
informational messages, and E for error messages.

Informational Messages
Informational messages provide information about the status of the MVSSERV
session and data transmissions. Informational messages also describe exception
conditions, such as server failures, which do not cause MVSSERV to end.

Error Messages
Error messages describe conditions that cause MVSSERV to end abnormally. The
conditions may be internal MVSSERV errors, system errors, or input errors.
Possible input errors include incorrect syntax of the MVSSERV command, a
missing input parameter data set, or an CPRB address that was not valid.

Testing Servers

66 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Internal errors and system errors often require help from IBM service personnel, but
you may be able to correct input errors by following directions in the message
explanations.

The Internal Execution Path Trace Table
The last message in the trace data set, CHSTTP02I, displays MVSSERV’s internal
execution path trace table. MVSSERV makes an entry in the table whenever one
MVSSERV module calls another. Thus, the table provides a history of MVSSERV
module calls and makes it possible to track internal MVSSERV errors.

Figure 18 shows a sample of a trace data set obtained using the TRACE option of
MVSSERV. The message IDs are in the left-hand column of the figure.

For explanations of messages that appear in your MVSSERV trace data set, look
up the message ID (CHSxxxxxxx) in z/OS TSO/E Messages.

The message explanations tell what happened and why, and tell what action you
should take (if any) to correct a problem.

CHSCMI02I The control unit supports Read Partitioned Queries.
CHSTCA13I DFT access method driver is active.
CHSTRR01I CPRB request at 12:37:07 server=SERVER2 function=0001:
CHSRUTR06I Server request failed; SERVER2 is in an inactive task.
CHSDCOM09I User pressed the PF3 key, requesting termination.
CHSCPS08I MVSSERV is ending.
CHSTTP01I Internal trace table follows. Last entry is 019:
CHSTTP02I 000 TIOR 001 TIOR 002 TIOR 003 TIOR
CHSTTP02I 004 TIOR 005 TIOR 006 TIOR 007 TIOR
CHSTTP02I 008 TIOR 009 TIOR 010 TIOR 011 TIOR
CHSTTP02I 012 TIOR 013 TIOR 014 TIOR 015 TIPM
CHSTTP02I 016 TIOR 017 TIOR 018 TIOR 019 TTTP
CHSTTP02I 020 TSRV 021 TRUTR 022 TRUTR 023 TRUTR
CHSTTP02I 024 TRUTR 025 TCMI 026 TLMP 027 TIOR
CHSTTP02I 028 TDCA 029 HRES 030 TDCOM 031 TCH7
CHSTTP02I 032 TC7H 033 PACK 034 TINF 035 TTRL
CHSTTP02I 036 TLMP 037 TIOR 038 HQNL 039 TDCOM...

Figure 18. Sample Trace Data Set

Diagnosing Servers

Chapter 6. Testing and Diagnosis 67

Diagnosing Servers

68 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Chapter 7. Macro Syntax and Parameters

CHSDCPRB Macro . 69
Accessing the CPRB. 69
Creating a CPRB for the DEFSERV or SENDREQ Macro 70

CHSCED Macro . 70
INITTERM Macro . 70
DEFSERV Macro . 71

Register Contents for DEFSERV 72
DEFSERV Syntax and Parameters 72
The DEFSERV CPRB . 73

SENDREQ Macro . 73
Register Contents for SENDREQ 74
SENDREQ Syntax and Parameters 74
The SENDREQ CPRB . 76

CHSTRACE Macro . 76
CHSTRACE Considerations 76
CHSTRACE Syntax and Parameters 77

This chapter describes the syntax and parameters of the following MVSSERV
macros:

Table 7. MVSSERV Macros

Macro Function On page:

CHSDCPRB CPRB mapping macro 69

CHSCED CED mapping macro 70

INITTERM INITTERM mapping macro 70

DEFSERV Server definition macro 71

SENDREQ Send request macro 73

CHSTRACE Message issuing macro 76

CHSDCPRB Macro
The CHSDCPRB macro provides a CPRB mapping DSECT or builds code to
acquire storage for and partially initialize a CPRB control block. You can use the
CHSDCPRB macro to:
v Access the fields of a CPRB to obtain service request input.
v Create a CPRB to use with the DEFSERV or SENDREQ macros.

Accessing the CPRB
Servers receive service request input in the CPRB. A server can use the
CHSDCPRB macro to access the fields of a CPRB to obtain the input. To access a
CPRB, use the CHSDCPRB macro with the following syntax:
[label] CHSDCPRB [DSECT=YES|NO]

Code the macro with DSECT=YES (or omit the DSECT parameter) to build a
DSECT for the CPRB fields. You can use the label CHSDCPRB to address the
CPRB with an assembler USING statement. For an example of using the
CHSDCPRB macro to access a CPRB, see “Sample Servers” on page 12. Table 1
on page 9 shows the service request CPRB that servers access using macro
CHSDCPRB.

© Copyright IBM Corp. 1988, 2001 69

Creating a CPRB for the DEFSERV or SENDREQ Macro
Before issuing the DEFSERV or SENDREQ macro, a program must create a
CPRB. To create a CPRB, you can use the CHSDCPRB macro with the following
syntax:
[label] CHSDCPRB DSECT=NO

Note: If the program is reentrant, use the GETMAIN macro to obtain storage for
the CPRB.

For an example of using the CHSDCPRB macro with DEFSERV, see “Sample
Initialization/Termination Program” on page 42.

For an example of using the CHSDCPRB macro with SENDREQ, see “Sample
Servers” on page 12.

A program can use the same CPRB repeatedly to define multiple servers or send
multiple requests. Therefore, a program only needs to issue the CHSDCPRB macro
once to create one CPRB.

If you use the CHSDCPRB macro to obtain storage for the CPRB dynamically, the
storage is freed when the program ends. If you use the GETMAIN macro to obtain
storage, you must use the FREEMAIN macro to release it.

CHSCED Macro
MVSSERV’s connectivity environment descriptor (CED) contains addresses that
must be included in the DEFSERV, SENDREQ, and CHSTRACE macros. Programs
can use the CHSCED mapping macro to obtain these addresses from the CED.
The CHSCED macro has the following syntax:
[label] CHSCED [DSECT=YES|NO]

Code the macro with DSECT=YES (or omit the DSECT parameter) to build a
DSECT that maps the CED fields. You can use the label CHSCED to address the
control block with an assembler USING statement. For an example of using the
CHSCED macro see “Sample Servers” on page 12.

Table 8 shows the fields of the CED.

Table 8. Connectivity Environment Descriptor (CED)
Offset

Dec(Hex)
Number
of Bytes

Field Name Contents

0(0) 4 CEDROUT Address of router for DEFSERV and
SENDREQ requests.

4(4) 8 Reserved
12(C) 4 CEDTRCE Address of trace facility for CHSTRACE

requests.
16(10) 80 Reserved

INITTERM Macro
The INITTERM control block provides input to server initialization/termination
programs when MVSSERV begins and ends. Use the INITTERM mapping macro in
an initialization/termination program to access fields of the INITTERM control block.
The INITTERM macro has the following syntax:

CHSDCPRB Macro

70 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

[label] INITTERM [DSECT=YES|NO]

Code the macro with DSECT=YES (or omit the DSECT parameter) to build a
DSECT that maps the control block fields. You can use the label INITTERM to
address the control block with an assembler USING statement. For an example of
using the INITTERM macro, see “Sample Initialization/Termination Program” on
page 42.

Table 9 shows the INITTERM control block. Note that some fields contain input for
termination only.

Table 9. INITTERM Control Block
Offset

Dec(Hex)
Number
of Bytes

Field Name Contents

0(0) 4 INTINIT Initialization or termination indicator. X'0000'
indicates initialization; X'0001' indicates
termination.

4(4) 4 INTWALEN Work area length. The length of a work
area, if any, specified at initialization.

8(8) 4 INTWAPTR Work area address. The address of a work
area, if any, specified at initialization.

12(C) 8 INTSNAME�1� Name of the last server that sent a reply. If
the initialization/termination program defined
this server and the last reply was not
received successfully (see INTRSN), the
initialization/termination program may take
appropriate action; for example, cancelling
the last service performed.

20(14) 4 INTRSN�1� Return code for last reply. Contains one of
the following return codes:

0(0) Processing was successful.

4(4) The last reply may not have been
successfully received by the
requester.

8(8) The last reply was not successfully
received by the requester.

10(A) The last reply CPRB from the
server was not valid.

24(18) 4 Reserved
28(1C) 4 INTENVRN CPPL address. The CPPL must be in

register 1 if a program invokes a TSO/E
command processor or uses TSO/E
services such as SCAN or PARSE.

32(20) 4 Reserved

Note:

�1� Input for termination only.

DEFSERV Macro
To define servers to MVSSERV, use the DEFSERV macro. Initialization/termination
programs can issue the DEFSERV macro to define servers, and servers can also
issue the DEFSERV macro to define other servers.

INITTERM Macro

Chapter 7. Macro Syntax and Parameters 71

Register Contents for DEFSERV
Before issuing the DEFSERV macro, you must set register 13 to point to a 72-byte
save area:
Register 13

Address of a standard 72-byte save area

There are no requirements for the other registers. However, the DEFSERV macro
may change the contents of the following registers: 0, 1, 14, 15.

DEFSERV Syntax and Parameters
Table 10 shows the syntax of the DEFSERV macro. For an example of the
DEFSERV macro, see Figure 14 on page 43.

Table 10. DEFSERV Macro Syntax

EXECUTE FORM

label DEFSERV CPRB=address,
CED=address,
SERVNAME=server_name,
SERVEPA=server_address,
SERVPARM=parmlist_address
MF=(E,plist_name)

LIST FORM

plist_name DEFSERV MF=L

Note: The addresses can be any address valid in an RX instruction, or the number of a
general register (2–12) enclosed in parentheses. The addresses must be in the same
addressing mode (AMODE) as the issuing program.

Execute Form
CPRB=address

Specify the address of the DEFSERV CPRB. The CPRB must begin on a
fullword boundary.

CED=address
Specify the address of the CED that was passed as input to the issuing
program. (To map the CED, use the CHSCED macro.)

SERVNAME=server_name
Specify the name of the server being defined. You can also specify a general
register (2–12) that points to an 8-byte field containing the server name. To do
so, enclose the register number in parentheses. This name is passed to
MVSSERV in the CRBSNAME field of the DEFSERV CPRB.

SERVEPA=server_address
Specify the address of the server being defined. If this program loaded the
server, obtain the address from the LOAD macro. If you do not obtain the
address from the LOAD macro, and the server is AMODE 31, be sure to specify
the address with the high-order bit set to 1.

SERVPARM=parmlist_address
Specify the address of a server parameter list (parmlist). If no parmlist is
desired, code SERVPARM=0. The server parmlist should point to any resources
that the issuing program obtained for the server, such as shared data sets and
storage. MVSSERV passes this parmlist to the server when it calls the server to
handle a service request.

DEFSERV Macro

72 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

MF=(E,plist_name)
Specify the name of a 20-byte area that will contain the DEFSERV parameter
list (plist):

v The addresses of the CPRB and CED (8 bytes)

v The server entry point address and server parmlist address (the define server
parameter area -- 12 bytes).

List Form
plist name MF=L

generates 20 bytes of storage to contain the addresses of the CPRB and CED
(8 bytes) and the define server parameter area (12 bytes). The DEFSERV
macro fills in this storage. The label on this statement must match the
DEFSERV plist name used in the MF keyword of the execute form of the
macro.

Note: If the issuing program is reentrant, it must use the GETMAIN macro to
allocate the 20 bytes of storage, and the FREEMAIN macro to release
the storage when finished processing.

The DEFSERV CPRB
The DEFSERV macro fills in a CPRB as shown in Table 11. The DEFSERV macro
sends the CPRB to MVSSERV, which uses the CPRB to identify the server name
with the server’s address and parmlist.

Table 11. CPRB Control Block Used to Define a Server
Offset

Dec(Hex)
Number
of Bytes

Field Name Contents

0(0) 1 CRBF1 The control block’s version number (first
four bits) and modification level number (last
four bits).

1(1) 2 Reserved
3(3) 1 CRBF4 The type of request (X'03' indicates a Define

Server request).
4(4) 4 CRBCPRB The value of C‘CPRB’.
8(8) 8 Reserved

16(10) 8 CRBSNAME The server name specified in the DEFSERV
parameter SERVNAME.

24(18) 32 Reserved
56(38) 4 CRBRQPLN The value X'03', indicating the length of the

define server parameter area.
60(3C) 4 CRBRQPRM The address of the define server parameter

area.
64(40) 48 Reserved

For a list of return codes from the DEFSERV macro, see “Chapter 8. MVSSERV
Return Codes” on page 79.

SENDREQ Macro
To send service requests to servers that are defined in the current MVSSERV
session, use the SENDREQ macro. Servers, initialization/termination programs, and
access method drivers can issue the SENDREQ macro.

DEFSERV Macro

Chapter 7. Macro Syntax and Parameters 73

Register Contents for SENDREQ
Before issuing the SENDREQ macro, you must set register 13 to point to a 72-byte
save area:
Register 13

Address of a standard 72-byte save area

There are no requirements for the other registers. However, the SENDREQ macro
may change the contents of the following registers: 0, 1, 14, 15.

SENDREQ Syntax and Parameters
Table 12 shows the syntax of the SENDREQ macro. Optional parameters are
enclosed in brackets. For an example of the SENDREQ macro, see Figure 6 on
page 14.

Table 12. SENDREQ Macro Syntax

EXECUTE FORM

label SENDREQ CPRB=name or address,
CED=name or address,
SERVER=name or address,
[FUNCTION=name or address,]
[REQPARM=(address,length),]
[REQDATA=(address,length),]
[REPPARM=(address,length),]
[REPDATA=(address,length),]
[RETCODE=address,]
MF=(E,plist_address[,COMPLETE])

LIST FORM

SENDREQ MF=(L,plist_address[,attr])

Note: The addresses can be any address valid in an RX instruction, or the number of a
general register (2)–(12) enclosed in parentheses. Addresses must be in the same
addressing mode (AMODE) as the issuing program.

Execute Form
CPRB=name or address

Specify the name, or address in a register (2–12), of the CPRB control block.
The CPRB must be obtained by the invoker of SENDREQ and must begin on a
fullword boundary. (To map the CPRB, use the CHSDCPRB macro.)

CED=name or address
Specify the name, or address in a register (2–12), of the CED that was passed
as input to the invoking program. (To map the CED, use the CHSCED macro.)

SERVER=name or address
Specify the name, or address in a register (2–12), of an field containing the
name of the server to which the request is being sent. The maximum length of
the field is eight characters.

[FUNCTION=name or address]
Specify the name, or address in a register (2–12), of a 2-byte field containing
the function ID of the service function being requested. If FUNCTION is omitted,
it defaults to 0.

[REQPARM=(address,length)]
Specify data describing the request parameter list to be passed to the server.

SENDREQ Macro

74 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Provide the names, or addresses in registers (2–12), of a 4-byte field containing
the address and a 4-byte field containing the length of the request parameter
list. The maximum length is 32763 bytes. If address or length is omitted, it
defaults to 0. If REQPARM is omitted, no request parameter list is passed.

[REQDATA=(address,length)]
Specify data describing the request data area to be passed to the server.

Provide the names, or addresses in registers (2–12), of a 4-byte field containing
the address and a 4-byte field containing the length of the request data area.
The maximum length is 65535 bytes. If address or length is omitted, it defaults
to 0. If REQDATA is omitted, no request data area is passed.

[REPPARM=(address,length)]
Specify data describing the reply parameter area to be passed to the server.

Provide the names, or addresses in registers (2–12), of a 4-byte field containing
the address and a 4-byte field containing the length of the reply parameter list.
The maximum length is 32763 bytes. If address or length is omitted, it defaults
to 0. If REPPARM is omitted, no reply parameter list is passed.

[REPDATA=(address,length)]
Specify data describing the reply data area to be passed to the server.

Provide the names, or addresses in registers (2–12), of a 4-byte field containing
the address and a 4-byte field containing the length of the reply data area. The
maximum length is 65535 bytes. If address or length is omitted, it defaults to 0.
If REPDATA is omitted, no reply data area is passed.

[RETCODE=variable]
Specify the name or address of a 4-byte output variable to receive the
SENDREQ return code from register 15. If you omit this parameter, you must
obtain the return code from register 15.

MF=(E,plist_address[,COMPLETE])
specifies the execute form of the macro and the address of a storage area for
the macro parameter list. The execute form generates code to put the
parameters into a parameter list and invoke the desired server.

[,COMPLETE]
MVSSERV performs complete syntax checking, verifying that required
SENDREQ parameters are specified and supplying default values for
omitted optional parameters.

List Form
MF(L,plist_address[,attr])

Specify the list form of the macro and the address of a storage area for the
macro parameter list. The list form defines an area to contain the parameter list.

[,attr]
Specify an optional input string that contains any special attributes for the
parameter list, such as its word boundary. The maximum length of the string
is 60 characters. If omitted, the default is BDY(DWORD).

Note: If the issuing program is reentrant, it must use the GETMAIN macro to
allocate the storage area for the parameter list and the FREEMAIN
macro to release the storage.

SENDREQ Macro

Chapter 7. Macro Syntax and Parameters 75

The SENDREQ CPRB
The SENDREQ macro fills in a CPRB as shown in Table 13. The SENDREQ macro
sends the CPRB to MVSSERV, which routes the CPRB to the requested server.

Table 13. CPRB Control Block for Sending a Request (SENDREQ)
Offset

Dec(Hex)
Number
of Bytes

Field Name Contents

0(0) 1 CRBF1 The control block’s version number (first
four bits) and modification level number (last
four bits).

1(1) 2 Reserved
3(3) 1 CRBF4 The type of request. X'01' indicates a

service request. (X'03' indicates a define
server (DEFSERV) request.)

4(4) 4 CRBCPRB Control block identifier (‘CPRB’).
8(8) 8 Reserved

16(10) 8 CRBSNAME The name of the requested server.
24(18) 2 Reserved
26(1A) 2 CRBFID The ID number of the requested service

function.
28(1C) 12 Reserved
40(28) 4 CRBRQDLN The length of the request data.
44(2C) 4 CRBRQDAT The address of the request data.
48(30) 4 CRBRPDLN The length of the reply data (maximum

length allowed by the invoker of
SENDREQ).

52(34) 4 CRBRPDAT The address of the buffer for reply data.
56(38) 4 CRBRQPLN The length of the request parameters.
60(3C) 4 CRBRQPRM The address of the request parameters.
64(40) 4 CRBRPPLN The length of the reply parameters

(maximum length allowed by the invoker of
SENDREQ).

68(44) 4 CRBRPPRM The address of the buffer for reply
parameters.

72(48) 40 Reserved

For a list of return codes from the SENDREQ macro, see “Chapter 8. MVSSERV
Return Codes” on page 79.

CHSTRACE Macro
To issue messages to the terminal, the MVSSERV trace data set, or both, use the
CHSTRACE macro. Servers, initialization/termination programs, and access method
drivers can issue the CHSTRACE macro.

CHSTRACE Considerations
Messages from CHSTRACE must not exceed 80 characters in length. Any
messages over 80 characters long are truncated after the 80th character.

Messages must begin with a message ID or a blank character. If an MVSSERV
user has PROFILE NOMSGID specified, TSO/E removes the message ID or any
other characters preceding the first blank character in the message.

SENDREQ Macro

76 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

CHSTRACE Syntax and Parameters
Table 14 shows the syntax of the CHSTRACE macro. Optional parameters are
shown in brackets. For an example of the CHSTRACE macro, see Figure 6 on
page 14.

Table 14. CHSTRACE Macro Syntax

EXECUTE FORM

label CHSTRACE [DEST=[TRACE|TERM|BOTH],]
CED=name or address,
BUFFER=name or address,
BUFLEN=name or address,
[RETCODE=variable,]
MF=(E,plist_address[,COMPLETE])

LIST FORM

CHSTRACE MF=(L,plist_address[attr])

Note: The addresses can be any address valid in an RX instruction, or the number of a
general register (2–12) enclosed in parentheses.

Execute Form
[DEST=[TRACE | TERM | BOTH],]

Specify the destination of the message. TRACE sends the message to the
MVSSERV trace data set. TERM sends the message to the terminal. BOTH
sends the message to both the terminal and the trace data set. If you omit this
parameter, messages go to the trace data set.

CED=name or address
Specify the name, or address in a register (2–12), of the CED that was passed
as input to the invoking program. To map the CED, use the CHSCED macro.

BUFFER=name | address
Specify the name, or address in a register (2–12), of a message buffer that the
macro is to issue.

BUFLEN=address
Specify the name, or address in a register (2–12), of a 4-byte field that contains
the length in bytes of the message buffer to be issued. The maximum buffer
length is 80 bytes. Messages that exceed 80 characters in length are truncated.

[RETCODE=variable]
Specify the name or address of a 4-byte output variable to receive the
CHSTRACE return code from register 15. If you omit this parameter, you must
obtain the return code from register 15.

MF=(E,plist_address[,COMPLETE])
specifies the execute form of the macro and the address of a storage area for
the macro parameter list. The execute form generates code to put the
parameters into a parameter list and invoke the desired server.

[,COMPLETE]
MVSSERV performs complete syntax checking, verifying that required
CHSTRACE parameters are specified and supplying default values for
omitted optional parameters.

CHSTRACE Macro

Chapter 7. Macro Syntax and Parameters 77

List Form
MF(L,plist_address[,attr])

specifies the list form of the macro and the address of a storage area for the
macro parameter list. The list form defines an area to contain the parameter list.

[,attr]
Specify an input string that contains any special attributes for the parameter
list. The maximum length of the input string is 60 characters. If omitted, the
default is BDY(DWORD).

Note: If the issuing program is reentrant, it must use the GETMAIN macro to
allocate the storage area for the parameter list and the FREEMAIN
macro to release the storage.

For a list of return codes from the CHSTRACE macro, see “Chapter 8. MVSSERV
Return Codes” on page 79.

CHSTRACE Macro

78 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Chapter 8. MVSSERV Return Codes

Return Codes from the DEFSERV Macro 79
Return Codes from the DEFSERV CPRB 79

Return Codes from the SENDREQ Macro 80
Return Codes from the SENDREQ CPRB 80

Return Codes from the CHSTRACE Macro 81

This chapter lists return codes from the DEFSERV, SENDREQ, and CHSTRACE
macros.

Return Codes from the DEFSERV Macro
When a program resumes control after issuing the DEFSERV macro, the program
must inspect register 15 for a return code from MVSSERV. The possible return
codes are shown in Table 15.

Table 15. Return Codes from the DEFSERV Macro

Return Code
Dec(Hex)

Meaning

0(0) The DEFSERV request was successful.

4(4) The DEFSERV request was unsuccessful. The program must inspect
the MVSSERV return code in the CPRB (field CRBCRTNC) to
determine the cause of the failure. See “Return Codes from the
DEFSERV CPRB”.

8(8) The CPRB is not valid. Data fields in the CPRB, such as CPRBF4,
contained information that was not valid.

12(C) The CPRB is not valid. 24-bit addresses are not valid (the high-order
byte of the addresses was not 0).

16(10) The CPRB is not valid. The address of the CPRB or addresses within
the CPRB are not valid, causing MVSSERV to fail.

Return Codes from the DEFSERV CPRB
If the return code in register 15 is 4, the program must check for an additional
return code in the DEFSERV CPRB, which MVSSERV returns after finishing with
the DEFSERV macro. The additional return code, if any, is in field CRBCRTNC, as
shown in Table 16.

Table 16. Return Codes in the DEFSERV CPRB
Offset

Dec(Hex)
Number
of Bytes

Field Name Contents or Meaning

0(0) 12 Reserved
12(C) 4 CRBCRTNC The return code from MVSSERV in

response to the DEFSERV request CPRB.
Contains one of the following return codes:
0000 Processing was successful.
0148 Request failed; another defined

server has the same name.
0152 Request failed; MVSSERV error.

16(10) 96 Reserved

© Copyright IBM Corp. 1988, 2001 79

Return Codes from the SENDREQ Macro
When a program resumes control after issuing the SENDREQ macro, the program
must inspect register 15, or the variable defined in the RETCODE parameter, for a
return code from MVSSERV. The possible return codes are shown in Table 17.

Table 17. Return Codes from the SENDREQ Macro

Return Code
Dec(Hex)

Meaning

0(0) The request was successfully routed.

4(4) The request was unsuccessfully routed. The program must inspect the
MVSSERV return code in the CPRB (field CRBCRTNC) to determine
the cause of the failure. See “Return Codes from the SENDREQ
CPRB”.

8(8) The CPRB is not valid. Data fields in the CPRB, such as CPRBF4
(function ID), contained information that was not valid.

12(C) The CPRB is not valid. 24-bit addresses are not valid (the high-order
byte of the addresses was not 0).

16(10) The CPRB is not valid. The address of the CPRB or addresses within
the CPRB are not valid, causing MVSSERV to fail.

Return Codes from the SENDREQ CPRB
If the return code in register 15 is 4, you must check for an additional return code in
the CPRB, which MVSSERV returns after handling the SENDREQ macro. The
additional return code, if any, is in field CRBCRTNC.

The return codes and their meanings are shown in Table 18.

Table 18. Return Codes in the SENDREQ CPRB
Offset

Dec(Hex)
Number
of Bytes

Field Name Contents

0(0) 12 Reserved
12(C) 4 CRBCRTNC The return code from MVSSERV in the

SENDREQ reply CPRB:
0000 Processing was successful.
0130 Request failed; the server was not

found.
0131 Request failed; the server was

unavailable.
0132 Request failed; the reply parameter

length was not valid.
0133 Request failed; the reply data

length was not valid.
0135 Request failed; the requested

server failed.
0136 Request failed; MVSSERV error.

16(10) 96 Reserved

Return Codes from the SENDREQ Macro

80 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Return Codes from the CHSTRACE Macro
When a program resumes control after issuing the CHSTRACE macro, the program
must inspect register 15, or the variable defined in the RETCODE parameter, for a
return code from MVSSERV. The possible return codes are shown in Table 19.

Table 19. Return Codes from the CHSTRACE Macro

Return Code
Dec(Hex)

Meaning

0(0) The message was successfully issued (to the terminal, the trace data
set, or both).

4(4) A failure occurred in message processing. Check the syntax of the
CHSTRACE macro and the allocation of the trace data set.

Return Codes from the CHSTRACE Macro

Chapter 8. MVSSERV Return Codes 81

Return Codes from the CHSTRACE Macro

82 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2001 83

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Notices

84 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of z/OS TSO/E.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v IBM
v IBMLink
v OpenEdition
v OS/390
v RACF
v Resource Link
v z/OS

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix. Notices 85

86 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Bibliography

This section lists the books in the TSO/E library and related publications.

TSO/E Publications
TSO/E Publications

v z/OS TSO/E Administration, SA22-7780

v z/OS TSO/E CLISTs, SA22-7781

v z/OS TSO/E Command Reference, SA22-7782

v z/OS TSO/E Customization, SA22-7783

v z/OS TSO/E General Information, SA22-7784

v z/OS TSO/E Guide to SRPI, SA22-7785

v z/OS TSO/E Messages, SA22-7786

v z/OS TSO/E Primer, SA22-7787

v z/OS TSO/E Programming Guide, SA22-7788

v z/OS TSO/E Programming Services, SA22-7789

v z/OS TSO/E REXX Reference, SA22-7790

v z/OS TSO/E REXX User’s Guide, SA22-7791

v z/OS TSO/E System Programming Command Reference, SA22-7793

v z/OS TSO/E System Diagnosis: Data Areas, GA22-7792

v z/OS TSO/E User’s Guide, SA22-7794

Related Publications
z/OS MVS Publications

v z/OS MVS Planning: APPC/MVS Management, SA22-7599

v z/OS MVS Programming: Writing Transaction Programs for APPC/MVS,
SA22-7621

v z/OS MVS Initialization and Tuning Reference, SA22-7592

v z/OS MVS Programming: Authorized Assembler Services Guide, SA22-7608

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN,
SA22-7609

v z/OS MVS System Messages, Vol 1 (ABA-AOM), SA22-7631

v z/OS MVS System Messages, Vol 2 (ARC-ASA), SA22-7632

v z/OS MVS System Messages, Vol 3 (ASB-BPX), SA22-7633

v z/OS MVS System Messages, Vol 4 (CBD-DMO), SA22-7634

v z/OS MVS System Messages, Vol 5 (EDG-GFS), SA22-7635

v z/OS MVS System Messages, Vol 6 (GOS-IEA), SA22-7636

v z/OS MVS System Messages, Vol 7 (IEB-IEE), SA22-7637

v z/OS MVS System Messages, Vol 8 (IEF-IGD), SA22-7638

v z/OS MVS System Messages, Vol 9 (IGF-IWM), SA22-7639

v z/OS MVS System Messages, Vol 10 (IXC-IZP), SA22-7640

v z/OS MVS System Codes, SA22-7626

v z/OS MVS Data Areas, Vol 1 (ABEP-DALT), GA22-7581

v z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC), GA22-7582

© Copyright IBM Corp. 1988, 2001 87

v z/OS MVS Data Areas, Vol 3 (IVT-RCWK), GA22-7583

v z/OS MVS Data Areas, Vol 4 (RD-SRRA), GA22-7584

v z/OS MVS Data Areas, Vol 5 (SSAG-XTLST), GA22-7585

ISPF Publications

v z/OS ISPF Services Guide, SC34-4819

v z/OS ISPF Dialog Developer’s Guide and Reference, SC34-4821

Bibliography

88 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Index

A
abend

obtaining a dump 61
suppressing a dump 62

ABEND
recovery from

initialization/termination program 40
server 12

access method driver (AMD)
considerations for writing 53
installation 59
interface 53
overview 5
sample 57

allocating
dump data set 62
dump suppression data set 62
input parameter data set 60
trace data set 61

AMD 5
AMODE

access method driver 55
initialization/termination program 36
server 7

ASCII-to-EBCDIC data conversion
performing in a server 10

assembling
an initialization/termination program 42
server 12

B
buffer

for message
using with the CHSTRACE macro 77

request and reply
passing ECF data and parameters in 10

C
CED (connectivity environment descriptor)

mapping to fields of 70
on entry to the initialization/termination program 37
pointer to

on entry to the server 8
CED parameter

CHSTRACE macro 77
DEFSERV macro 72
SENDREQ macro 74

CHSABEND data set 62
CHSCED macro 70
CHSDCPRB macro 9, 69
CHSPARM data set 60
CHSTRACE data set 61
CHSTRACE macro 76

return code from 81
command processor parameter list (CPPL) 38

command syntax for MVSSERV 65
compiling

an initialization/termination program 42
server 12

concepts of the IBM Enhanced Connectivity Facility 1
connectivity environment descriptor (CED) 8
connectivity programming request block (CPRB) 4
control block

CED 70
CPRB 76

DEFSERV reply 79
DEFSERV request 39, 73
on entry to the server 9
on exit from the server 11
SENDREQ reply 80
with reply from another server 11

INITTERM
at initialization 37
at termination 41

sending a request (SENDREQ) 76
converting data

from ASCII to EBCDIC, in a server 10
CPPL (command processor parameter list) 38

address of
as input at initialization 38
as input at termination 41

CPRB (connectivity programming request block) 4
DEFSERV reply 79
DEFSERV request 39, 73
on entry to the server 9

with reply from another server 11
on exit from the server 11
overview 4
sending a request (SENDREQ) 76
SENDREQ reply 80
using a CPRB

to define a server to MVSSERV 39
to receive a service reply 11
to receive a service request 8
to send a service reply 10
to send a service request 11

using one CPRB
to define multiple servers 70
to send multiple requests 70

CPRB parameter
DEFSERV macro 72
SENDREQ macro 74

D
data

for service requests and replies,
using buffers to pass 10

data set for MVSSERV
dump data set 61
dump suppression data set 62
input parameter data set 60
trace data set 61

© Copyright IBM Corp. 1988, 2001 89

data set for MVSSERV (continued)
allocating 61
reading 66
sample 67

define server parameter area
creating (in DEFSERV macro) 73

defining a server to MVSSERV 39
defining multiple servers with one CPRB 70
defining server parameter area

content 39
DEFSERV macro 71, 72

return code from 79
deleting a server 42
designing a server 7
designing an initialization/termination program 36
DEST parameter

of the CHSTRACE macro 77
diagnosis for MVS servers 66
dump, obtaining 61
dump data set 61
dump suppression data set 62

E
EBCDIC-to-ASCII data conversion

performing in a server 10
ECF (Enhanced Connectivity Facility) 1

concepts 1
ECF environment using MVSSERV 3
ending a TSO/E Enhanced Connectivity session 66
starting a TSO/E Enhanced Connectivity session 65

ending MVSSERV 66
Enhanced Connectivity Facility (ECF) 1
error message 66
error recovery

initialization/termination program 40
server 12

ESTAE macro
server recovery 12

example 14
access method driver 57
initialization/termination program 43
server 14
trace data set 67

execution path trace table 67
external trace data

creating a data set for 61
retrieving and reading 66

F
freeing resource 42
function ID

obtaining from the receive request CPRB 9

H
handling a service request

overview 8
help for MVSSERV message 66

I
ID, service function

obtaining from the receive request CPRB 9
informational message 66
initialization/termination program 2

design 36
function of

defining server 39
deleting a server 42
freeing resources 42
loading a server 38
obtaining resources 38

in relation to a server 2, 36
input to

at initialization 37
at termination 41

installation 59
naming 36
naming in the input parameter data set 60
overview 2
processing overview 36
recovery routine 40
sample 43

initializing
dump suppression data set 62
input parameter data set 60

INITTERM control block
at initialization 37
at termination 41

INITTERM macro 70
input

initialization/termination program
at initialization 37
at termination 41

server 4
input parameter data set 60
installing

access method driver 59
initialization/termination program 59
server 59

INTRSN field of INITTERM control block
at termination only 41

INTSNAME field of INITTERM control block
at termination only 41

IOTRACE option of MVSSERV
command syntax 65

IOTRACE parameter of MVSSERV
trace data produced by 61

issuing a message
from a server 12
from an access method driver 56
from an initialization/termination program 40

issuing MVSSERV 65

L
link-editing

an initialization/termination program 42
server 12

load module
linking a server to a 12

90 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

load module (continued)
linking an initialization/termination program to a 42

loading a server

considerations 36
example 38

M
macro

CHSCED 70
CHSDCPRB 69
CHSTRACE 76
DEFSERV 71
INITTERM 70
SENDREQ 73

macro syntax and parameter 69

mapping macro 9

CHSCED
for mapping the CED 70

CHSDCPRB
for creating a CPRB 70
for mapping a CPRB 69
for mapping the CPRB 9

INITTERM
for mapping to initialization/termination input 70

message, issuing

from a server 12
from an access method driver 56
from an initialization/termination program 40

message help (online) 66

message manual, using 67

MVSSERV command

description 3
diagnosis 66
issuing 65
message 66
online message help 66
sequence of events in an MVSSERV session 4
syntax 65
task structure 35
termination 66

N
Notices 83

NOTRACE option of MVSSERV

command syntax 65

O
obtaining resources for a server 38

online message help 66

operand of the MVSSERV command 65

overview

of initialization/termination program processing 36
of service request handling 8

P
parameter

for service requests and replies,
using buffers to pass 10

parmlist, server 8
content 38
on entry to the server 8
pointer from initialization/termination program 39, 72

preparing for execution
initialization/termination program 42
servers 12

procedure
designing a server 7
designing an initialization/termination program 36
writing a server 4
writing an initialization/termination program 5

R
receiving a service request 8
recovery routine

for the initialization/termination program 40
for the server 12

reentrant program
installing in system library 59

register content 8
at entry to server 8
at exit from server 10
at initialization 37
at termination 41
required for DEFSERV macro 72
required for SENDREQ macro 74

reply, service
detecting reply failure 41
overview 1
sending from the server 10

reply data 10
reply parameter 10
request data 10
request parameter 10
requester 1

books about 7
overview of 1
planning considerations 7

resource, for a server
freeing 42
obtaining 38

return address
after initialization 37
after termination 41
for a server 11

return code 10, 80, 81
initialization/termination program 42
MVSSERV 79

CHSTRACE macro 81
DEFSERV CPRB 79
DEFSERV macro 79
last service reply 41
SENDREQ CPRB 80
SENDREQ macro 80

Index 91

return code 10, 80, 81 (continued)
server-requester pair 10

RMODE
access method driver 55
initialization/termination program 36
server 7

S
sample

access method driver 57
initialization/termination program 43
server 14
trace data set 67

sending a service reply 10
sending multiple requests with one CPRB 70
SENDREQ macro 73

register content required for 74
return code from 80

sequence of events in an MVSSERV session 4
server 1

assembling 12, 42
compiling 12, 42
debugging 65
deleting 42
design 7
diagnosis 66
executing 65
initialization 37
input from MVSSERV 8
input from requester 9
installation 59
loading 38
naming 7
overview 1
recovery routine 12
sample server 14
termination 41
testing 65
writing a 8

server parmlist 8
content 38
on entry to the server 8
pointer from initialization/termination program 39, 72

server-requester programming interface (SRPI) 3
service function 2

ID, obtaining from the receive request CPRB 9
in relation to a server 2, 7
overview 2
packaging 7

service reply 1
detecting reply failure 41
overview 1
sending from the server 10

service request 1
overview 1
server handling of 8

SRPI (server-requester programming interface) 3
overview 3
summary of SRPI functions 3

starting MVSSERV 65

STEPLIB
installing a program in a 59

steps
designing a server 7
designing an initialization/termination program 36
writing a server 4
writing an initialization/termination program 5

suppressing an MVSSERV dump 62
syntax of MVSSERV macro 69
SYSABEND dump, data set for 62
SYSMDUMP dump, data set for 62
system library

installing a program in a 59
SYSUDUMP dump, data set for 62

T
task structure

for MVSSERV 35
testing a server 65
trace data set

allocating 61
issuing a message to

from a server 12
from an access method driver 56
from an initialization/termination program 40

reading 66
TRACE option of MVSSERV

command syntax 65
TRACE parameter of MVSSERV

trace data produced by 61
tracing 66

MVSSERV message 66
MVSSERV’s execution path 67

translating data
from ASCII to EBCDIC, in a server 10

W
writing

a server 8
an access method driver 53
an initialization/termination program 35

92 z/OS V1R1.0 TSO/E Guide to the Server-Requester Programming Interface

Readers’ Comments — We’d Like to Hear from You

z/OS
TSO/E Guide to the Server-Requester Programming Interface

Publication No. SA22-7785-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7785-00

SA22-7785-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7785-00

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	How This Book Is Organized
	Where to Find More Information
	Accessing Licensed Books on the Web
	Using LookAt to Look Up Message Explanations

	Chapter 1. Introduction
	Concepts of the TSO/E Enhanced Connectivity Facility
	What is an MVS Server?
	Service Functions
	Initialization/Termination Programs

	What is MVSSERV?
	The SRPI
	The CPRB Control Block
	The INITTERM Control Block
	The Sequence of Events in an MVSSERV Session

	What You Need to Do to Write Servers
	Writing Access Method Drivers for MVSSERV

	Chapter 2. Designing and Writing a Server
	Server Design
	Steps for Designing a Server
	Writing a Server
	Using the CPRB
	Receiving the Service Request
	Performing the Service
	Sending the Service Reply
	Sending a Service Request
	Receiving a Service Reply
	Issuing Messages
	The Server Recovery Routine

	Compiling or Assembling a Server
	Sample Servers

	Chapter 3. Designing and Writing a ServerInitialization/Termination Program
	Program Design
	Steps for Designing an Initialization/Termination Program

	Writing an Initialization/Termination Program
	Initialization
	Input to the Initialization/Termination Program
	Loading the Servers
	Obtaining Resources
	Defining a Server
	Sending a Service Request
	Receiving a Service Reply
	Issuing Messages
	Recovery
	Ending Initialization

	Termination
	Freeing Resources
	Deleting the Servers

	Compiling or Assembling an Initialization/Termination Program
	Sample Initialization/Termination Program

	Chapter 4. Writing an Access Method Driver
	What is an Access Method Driver?
	Using the AMD Interface
	Writing an Access Method Driver

	Considerations for Writing Access Method Drivers
	Sending a Service Request
	Receiving a Service Reply
	Issuing Messages

	Sample Access Method Driver

	Chapter 5. Installing Programs and Data Sets for Use withMVSSERV
	Installing a Program
	In a STEPLIB
	In a System Library

	Using the Input Parameter Data Set
	Allocating the Input Parameter Data Set
	Initializing the Input Parameter Data Set

	Additional MVSSERV Data Sets
	Trace Data Set
	Dump Data Set
	Dump Suppression Data Set

	Chapter 6. Testing and Diagnosis
	Testing Servers
	Steps for Testing Servers

	Diagnosing Servers
	Reading the Trace Data Set

	Chapter 7. Macro Syntax and Parameters
	CHSDCPRB Macro
	Accessing the CPRB
	Creating a CPRB for the DEFSERV or SENDREQ Macro

	CHSCED Macro
	INITTERM Macro
	DEFSERV Macro
	Register Contents for DEFSERV
	DEFSERV Syntax and Parameters
	The DEFSERV CPRB

	SENDREQ Macro
	Register Contents for SENDREQ
	SENDREQ Syntax and Parameters
	The SENDREQ CPRB

	CHSTRACE Macro
	CHSTRACE Considerations
	CHSTRACE Syntax and Parameters

	Chapter 8. MVSSERV Return Codes
	Return Codes from the DEFSERV Macro
	Return Codes from the DEFSERV CPRB

	Return Codes from the SENDREQ Macro
	Return Codes from the SENDREQ CPRB

	Return Codes from the CHSTRACE Macro

	Appendix. Notices
	Programming Interface Information
	Trademarks

	Bibliography
	TSO/E Publications
	Related Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

